Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
- Contract name:
- OptimismPortal
- Optimization enabled
- true
- Compiler version
- v0.8.15+commit.e14f2714
- Optimization runs
- 999999
- EVM Version
- london
- Verified at
- 2024-09-15T16:53:52.025460Z
src/L1/OptimismPortal.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { SafeCall } from "src/libraries/SafeCall.sol"; import { L2OutputOracle } from "src/L1/L2OutputOracle.sol"; import { SystemConfig } from "src/L1/SystemConfig.sol"; import { SuperchainConfig } from "src/L1/SuperchainConfig.sol"; import { Constants } from "src/libraries/Constants.sol"; import { Types } from "src/libraries/Types.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol"; import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol"; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { L1Block } from "src/L2/L1Block.sol"; import { Predeploys } from "src/libraries/Predeploys.sol"; import "src/libraries/PortalErrors.sol"; /// @custom:proxied /// @title OptimismPortal /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1 /// and L2. Messages sent directly to the OptimismPortal have no form of replayability. /// Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface. contract OptimismPortal is Initializable, ResourceMetering, ISemver { /// @notice Allows for interactions with non standard ERC20 tokens. using SafeERC20 for IERC20; /// @notice Represents a proven withdrawal. /// @custom:field outputRoot Root of the L2 output this was proven against. /// @custom:field timestamp Timestamp at whcih the withdrawal was proven. /// @custom:field l2OutputIndex Index of the output this was proven against. struct ProvenWithdrawal { bytes32 outputRoot; uint128 timestamp; uint128 l2OutputIndex; } /// @notice Version of the deposit event. uint256 internal constant DEPOSIT_VERSION = 0; /// @notice The L2 gas limit set when eth is deposited using the receive() function. uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000; /// @notice The L2 gas limit for system deposit transactions that are initiated from L1. uint32 internal constant SYSTEM_DEPOSIT_GAS_LIMIT = 200_000; /// @notice Address of the L2 account which initiated a withdrawal in this transaction. /// If the of this variable is the default L2 sender address, then we are NOT inside of /// a call to finalizeWithdrawalTransaction. address public l2Sender; /// @notice A list of withdrawal hashes which have been successfully finalized. mapping(bytes32 => bool) public finalizedWithdrawals; /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data. mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals; /// @custom:legacy /// @custom:spacer paused /// @notice Spacer for backwards compatibility. bool private spacer_53_0_1; /// @notice Contract of the Superchain Config. SuperchainConfig public superchainConfig; /// @notice Contract of the L2OutputOracle. /// @custom:network-specific L2OutputOracle public l2Oracle; /// @notice Contract of the SystemConfig. /// @custom:network-specific SystemConfig public systemConfig; /// @custom:spacer disputeGameFactory /// @notice Spacer for backwards compatibility. address private spacer_56_0_20; /// @custom:spacer provenWithdrawals /// @notice Spacer for backwards compatibility. bytes32 private spacer_57_0_32; /// @custom:spacer disputeGameBlacklist /// @notice Spacer for backwards compatibility. bytes32 private spacer_58_0_32; /// @custom:spacer respectedGameType + respectedGameTypeUpdatedAt /// @notice Spacer for backwards compatibility. bytes32 private spacer_59_0_32; /// @custom:spacer proofSubmitters /// @notice Spacer for backwards compatibility. bytes32 private spacer_60_0_32; /// @notice Represents the amount of native asset minted in L2. This may not /// be 100% accurate due to the ability to send ether to the contract /// without triggering a deposit transaction. It also is used to prevent /// overflows for L2 account balances when custom gas tokens are used. /// It is not safe to trust `ERC20.balanceOf` as it may lie. uint256 internal _balance; /// @notice Emitted when a transaction is deposited from L1 to L2. /// The parameters of this event are read by the rollup node and used to derive deposit /// transactions on L2. /// @param from Address that triggered the deposit transaction. /// @param to Address that the deposit transaction is directed to. /// @param version Version of this deposit transaction event. /// @param opaqueData ABI encoded deposit data to be parsed off-chain. event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData); /// @notice Emitted when a withdrawal transaction is proven. /// @param withdrawalHash Hash of the withdrawal transaction. /// @param from Address that triggered the withdrawal transaction. /// @param to Address that the withdrawal transaction is directed to. event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to); /// @notice Emitted when a withdrawal transaction is finalized. /// @param withdrawalHash Hash of the withdrawal transaction. /// @param success Whether the withdrawal transaction was successful. event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success); /// @notice Reverts when paused. modifier whenNotPaused() { if (paused()) revert CallPaused(); _; } /// @notice Semantic version. /// @custom:semver 2.8.1-beta.1 function version() public pure virtual returns (string memory) { return "2.8.1-beta.1"; } /// @notice Constructs the OptimismPortal contract. constructor() { initialize({ _l2Oracle: L2OutputOracle(address(0)), _systemConfig: SystemConfig(address(0)), _superchainConfig: SuperchainConfig(address(0)) }); } /// @notice Initializer. /// @param _l2Oracle Contract of the L2OutputOracle. /// @param _systemConfig Contract of the SystemConfig. /// @param _superchainConfig Contract of the SuperchainConfig. function initialize( L2OutputOracle _l2Oracle, SystemConfig _systemConfig, SuperchainConfig _superchainConfig ) public initializer { l2Oracle = _l2Oracle; systemConfig = _systemConfig; superchainConfig = _superchainConfig; if (l2Sender == address(0)) { l2Sender = Constants.DEFAULT_L2_SENDER; } __ResourceMetering_init(); } /// @notice Getter for the balance of the contract. function balance() public view returns (uint256) { (address token,) = gasPayingToken(); if (token == Constants.ETHER) { return address(this).balance; } else { return _balance; } } /// @notice Getter function for the address of the guardian. /// Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead. /// @return Address of the guardian. /// @custom:legacy function guardian() public view returns (address) { return superchainConfig.guardian(); } /// @notice Getter for the current paused status. /// @return paused_ Whether or not the contract is paused. function paused() public view returns (bool paused_) { paused_ = superchainConfig.paused(); } /// @notice Computes the minimum gas limit for a deposit. /// The minimum gas limit linearly increases based on the size of the calldata. /// This is to prevent users from creating L2 resource usage without paying for it. /// This function can be used when interacting with the portal to ensure forwards /// compatibility. /// @param _byteCount Number of bytes in the calldata. /// @return The minimum gas limit for a deposit. function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) { return _byteCount * 16 + 21000; } /// @notice Accepts value so that users can send ETH directly to this contract and have the /// funds be deposited to their address on L2. This is intended as a convenience /// function for EOAs. Contracts should call the depositTransaction() function directly /// otherwise any deposited funds will be lost due to address aliasing. receive() external payable { depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes("")); } /// @notice Accepts ETH value without triggering a deposit to L2. /// This function mainly exists for the sake of the migration between the legacy /// Optimism system and Bedrock. function donateETH() external payable { // Intentionally empty. } /// @notice Returns the gas paying token and its decimals. function gasPayingToken() internal view returns (address addr_, uint8 decimals_) { (addr_, decimals_) = systemConfig.gasPayingToken(); } /// @notice Getter for the resource config. /// Used internally by the ResourceMetering contract. /// The SystemConfig is the source of truth for the resource config. /// @return ResourceMetering ResourceConfig function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) { return systemConfig.resourceConfig(); } /// @notice Proves a withdrawal transaction. /// @param _tx Withdrawal transaction to finalize. /// @param _l2OutputIndex L2 output index to prove against. /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root. /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract. function proveWithdrawalTransaction( Types.WithdrawalTransaction memory _tx, uint256 _l2OutputIndex, Types.OutputRootProof calldata _outputRootProof, bytes[] calldata _withdrawalProof ) external whenNotPaused { // Prevent users from creating a deposit transaction where this address is the message // sender on L2. Because this is checked here, we do not need to check again in // `finalizeWithdrawalTransaction`. if (_tx.target == address(this)) revert BadTarget(); // Get the output root and load onto the stack to prevent multiple mloads. This will // revert if there is no output root for the given block number. bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot; // Verify that the output root can be generated with the elements in the proof. require( outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof" ); // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // We generally want to prevent users from proving the same withdrawal multiple times // because each successive proof will update the timestamp. A malicious user can take // advantage of this to prevent other users from finalizing their withdrawal. However, // since withdrawals are proven before an output root is finalized, we need to allow users // to re-prove their withdrawal only in the case that the output root for their specified // output index has been updated. require( provenWithdrawal.timestamp == 0 || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot, "OptimismPortal: withdrawal hash has already been proven" ); // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract. // Refer to the Solidity documentation for more information on how storage layouts are // computed for mappings. bytes32 storageKey = keccak256( abi.encode( withdrawalHash, uint256(0) // The withdrawals mapping is at the first slot in the layout. ) ); // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore // be relayed on L1. require( SecureMerkleTrie.verifyInclusionProof({ _key: abi.encode(storageKey), _value: hex"01", _proof: _withdrawalProof, _root: _outputRootProof.messagePasserStorageRoot }), "OptimismPortal: invalid withdrawal inclusion proof" ); // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be // proven once unless it is submitted again with a different outputRoot. provenWithdrawals[withdrawalHash] = ProvenWithdrawal({ outputRoot: outputRoot, timestamp: uint128(block.timestamp), l2OutputIndex: uint128(_l2OutputIndex) }); // Emit a `WithdrawalProven` event. emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target); } /// @notice Finalizes a withdrawal transaction. /// @param _tx Withdrawal transaction to finalize. function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused { // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other // than the default value when a withdrawal transaction is being finalized. This check is // a defacto reentrancy guard. if (l2Sender != Constants.DEFAULT_L2_SENDER) revert NonReentrant(); // Grab the proven withdrawal from the `provenWithdrawals` map. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have // a timestamp of zero. require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet"); // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of // safety against weird bugs in the proving step. require( provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(), "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp" ); // A proven withdrawal must wait at least the finalization period before it can be // finalized. This waiting period can elapse in parallel with the waiting period for the // output the withdrawal was proven against. In effect, this means that the minimum // withdrawal time is proposal submission time + finalization period. require( _isFinalizationPeriodElapsed(provenWithdrawal.timestamp), "OptimismPortal: proven withdrawal finalization period has not elapsed" ); // Grab the OutputProposal from the L2OutputOracle, will revert if the output that // corresponds to the given index has not been proposed yet. Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex); // Check that the output root that was used to prove the withdrawal is the same as the // current output root for the given output index. An output root may change if it is // deleted by the challenger address and then re-proposed. require( proposal.outputRoot == provenWithdrawal.outputRoot, "OptimismPortal: output root proven is not the same as current output root" ); // Check that the output proposal has also been finalized. require( _isFinalizationPeriodElapsed(proposal.timestamp), "OptimismPortal: output proposal finalization period has not elapsed" ); // Check that this withdrawal has not already been finalized, this is replay protection. require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized"); // Mark the withdrawal as finalized so it can't be replayed. finalizedWithdrawals[withdrawalHash] = true; // Set the l2Sender so contracts know who triggered this withdrawal on L2. // This acts as a reentrancy guard. l2Sender = _tx.sender; bool success; (address token,) = gasPayingToken(); if (token == Constants.ETHER) { // Trigger the call to the target contract. We use a custom low level method // SafeCall.callWithMinGas to ensure two key properties // 1. Target contracts cannot force this call to run out of gas by returning a very large // amount of data (and this is OK because we don't care about the returndata here). // 2. The amount of gas provided to the execution context of the target is at least the // gas limit specified by the user. If there is not enough gas in the current context // to accomplish this, `callWithMinGas` will revert. success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data); } else { // Cannot call the token contract directly from the portal. This would allow an attacker // to call approve from a withdrawal and drain the balance of the portal. if (_tx.target == token) revert BadTarget(); // Only transfer value when a non zero value is specified. This saves gas in the case of // using the standard bridge or arbitrary message passing. if (_tx.value != 0) { // Update the contracts internal accounting of the amount of native asset in L2. _balance -= _tx.value; // Read the balance of the target contract before the transfer so the consistency // of the transfer can be checked afterwards. uint256 startBalance = IERC20(token).balanceOf(address(this)); // Transfer the ERC20 balance to the target, accounting for non standard ERC20 // implementations that may not return a boolean. This reverts if the low level // call is not successful. IERC20(token).safeTransfer({ to: _tx.target, value: _tx.value }); // The balance must be transferred exactly. if (IERC20(token).balanceOf(address(this)) != startBalance - _tx.value) { revert TransferFailed(); } } // Make a call to the target contract only if there is calldata. if (_tx.data.length != 0) { success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, 0, _tx.data); } else { success = true; } } // Reset the l2Sender back to the default value. l2Sender = Constants.DEFAULT_L2_SENDER; // All withdrawals are immediately finalized. Replayability can // be achieved through contracts built on top of this contract emit WithdrawalFinalized(withdrawalHash, success); // Reverting here is useful for determining the exact gas cost to successfully execute the // sub call to the target contract if the minimum gas limit specified by the user would not // be sufficient to execute the sub call. if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) { revert GasEstimation(); } } /// @notice Entrypoint to depositing an ERC20 token as a custom gas token. /// This function depends on a well formed ERC20 token. There are only /// so many checks that can be done on chain for this so it is assumed /// that chain operators will deploy chains with well formed ERC20 tokens. /// @param _to Target address on L2. /// @param _mint Units of ERC20 token to deposit into L2. /// @param _value Units of ERC20 token to send on L2 to the recipient. /// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1. /// @param _isCreation Whether or not the transaction is a contract creation. /// @param _data Data to trigger the recipient with. function depositERC20Transaction( address _to, uint256 _mint, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) public metered(_gasLimit) { // Can only be called if an ERC20 token is used for gas paying on L2 (address token,) = gasPayingToken(); if (token == Constants.ETHER) revert OnlyCustomGasToken(); // Gives overflow protection for L2 account balances. _balance += _mint; // Get the balance of the portal before the transfer. uint256 startBalance = IERC20(token).balanceOf(address(this)); // Take ownership of the token. It is assumed that the user has given the portal an approval. IERC20(token).safeTransferFrom({ from: msg.sender, to: address(this), value: _mint }); // Double check that the portal now has the exact amount of token. if (IERC20(token).balanceOf(address(this)) != startBalance + _mint) { revert TransferFailed(); } _depositTransaction({ _to: _to, _mint: _mint, _value: _value, _gasLimit: _gasLimit, _isCreation: _isCreation, _data: _data }); } /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in /// deriving deposit transactions. Note that if a deposit is made by a contract, its /// address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider /// using the CrossDomainMessenger contracts for a simpler developer experience. /// @param _to Target address on L2. /// @param _value ETH value to send to the recipient. /// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1. /// @param _isCreation Whether or not the transaction is a contract creation. /// @param _data Data to trigger the recipient with. function depositTransaction( address _to, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) public payable metered(_gasLimit) { (address token,) = gasPayingToken(); if (token != Constants.ETHER && msg.value != 0) revert NoValue(); _depositTransaction({ _to: _to, _mint: msg.value, _value: _value, _gasLimit: _gasLimit, _isCreation: _isCreation, _data: _data }); } /// @notice Common logic for creating deposit transactions. /// @param _to Target address on L2. /// @param _mint Units of asset to deposit into L2. /// @param _value Units of asset to send on L2 to the recipient. /// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1. /// @param _isCreation Whether or not the transaction is a contract creation. /// @param _data Data to trigger the recipient with. function _depositTransaction( address _to, uint256 _mint, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) internal { // Just to be safe, make sure that people specify address(0) as the target when doing // contract creations. if (_isCreation && _to != address(0)) revert BadTarget(); // Prevent depositing transactions that have too small of a gas limit. Users should pay // more for more resource usage. if (_gasLimit < minimumGasLimit(uint64(_data.length))) revert SmallGasLimit(); // Prevent the creation of deposit transactions that have too much calldata. This gives an // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure // that the transaction can fit into the p2p network policy of 128kb even though deposit // transactions are not gossipped over the p2p network. if (_data.length > 120_000) revert LargeCalldata(); // Transform the from-address to its alias if the caller is a contract. address from = msg.sender; if (msg.sender != tx.origin) { from = AddressAliasHelper.applyL1ToL2Alias(msg.sender); } // Compute the opaque data that will be emitted as part of the TransactionDeposited event. // We use opaque data so that we can update the TransactionDeposited event in the future // without breaking the current interface. bytes memory opaqueData = abi.encodePacked(_mint, _value, _gasLimit, _isCreation, _data); // Emit a TransactionDeposited event so that the rollup node can derive a deposit // transaction for this deposit. emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData); } /// @notice Sets the gas paying token for the L2 system. This token is used as the /// L2 native asset. Only the SystemConfig contract can call this function. function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external { if (msg.sender != address(systemConfig)) revert Unauthorized(); // Set L2 deposit gas as used without paying burning gas. Ensures that deposits cannot use too much L2 gas. // This value must be large enough to cover the cost of calling `L1Block.setGasPayingToken`. useGas(SYSTEM_DEPOSIT_GAS_LIMIT); // Emit the special deposit transaction directly that sets the gas paying // token in the L1Block predeploy contract. emit TransactionDeposited( Constants.DEPOSITOR_ACCOUNT, Predeploys.L1_BLOCK_ATTRIBUTES, DEPOSIT_VERSION, abi.encodePacked( uint256(0), // mint uint256(0), // value uint64(SYSTEM_DEPOSIT_GAS_LIMIT), // gasLimit false, // isCreation, abi.encodeCall(L1Block.setGasPayingToken, (_token, _decimals, _name, _symbol)) ) ); } /// @notice Determine if a given output is finalized. /// Reverts if the call to l2Oracle.getL2Output reverts. /// Returns a boolean otherwise. /// @param _l2OutputIndex Index of the L2 output to check. /// @return Whether or not the output is finalized. function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) { return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp); } /// @notice Determines whether the finalization period has elapsed with respect to /// the provided block timestamp. /// @param _timestamp Timestamp to check. /// @return Whether or not the finalization period has elapsed. function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) { return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS(); } }
src/libraries/Storage.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Storage /// @notice Storage handles reading and writing to arbitary storage locations library Storage { /// @notice Returns an address stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getAddress(bytes32 _slot) internal view returns (address addr_) { assembly { addr_ := sload(_slot) } } /// @notice Stores an address in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _address The protocol version to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses /// in arbitrary storage slots. function setAddress(bytes32 _slot, address _address) internal { assembly { sstore(_slot, _address) } } /// @notice Returns a uint256 stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getUint(bytes32 _slot) internal view returns (uint256 value_) { assembly { value_ := sload(_slot) } } /// @notice Stores a value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _value The protocol version to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setUint(bytes32 _slot, uint256 _value) internal { assembly { sstore(_slot, _value) } } /// @notice Returns a bytes32 stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) { assembly { value_ := sload(_slot) } } /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _value The bytes32 value to store. /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setBytes32(bytes32 _slot, bytes32 _value) internal { assembly { sstore(_slot, _value) } } /// @notice Stores a bool value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the bool in. /// @param _value The bool value to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setBool(bytes32 _slot, bool _value) internal { assembly { sstore(_slot, _value) } } /// @notice Returns a bool stored in an arbitrary storage slot. /// @param _slot The storage slot to retrieve the bool from. function getBool(bytes32 _slot) internal view returns (bool value_) { assembly { value_ := sload(_slot) } } }
lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
src/universal/ISemver.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title ISemver /// @notice ISemver is a simple contract for ensuring that contracts are /// versioned using semantic versioning. interface ISemver { /// @notice Getter for the semantic version of the contract. This is not /// meant to be used onchain but instead meant to be used by offchain /// tooling. /// @return Semver contract version as a string. function version() external view returns (string memory); }
src/libraries/SafeCall.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title SafeCall /// @notice Perform low level safe calls library SafeCall { /// @notice Performs a low level call without copying any returndata. /// @dev Passes no calldata to the call context. /// @param _target Address to call /// @param _gas Amount of gas to pass to the call /// @param _value Amount of value to pass to the call function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) { assembly { success_ := call( _gas, // gas _target, // recipient _value, // ether value 0, // inloc 0, // inlen 0, // outloc 0 // outlen ) } } /// @notice Perform a low level call with all gas without copying any returndata /// @param _target Address to call /// @param _value Amount of value to pass to the call function send(address _target, uint256 _value) internal returns (bool success_) { success_ = send(_target, gasleft(), _value); } /// @notice Perform a low level call without copying any returndata /// @param _target Address to call /// @param _gas Amount of gas to pass to the call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function call( address _target, uint256 _gas, uint256 _value, bytes memory _calldata ) internal returns (bool success_) { assembly { success_ := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } } /// @notice Perform a low level call without copying any returndata /// @param _target Address to call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) { success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata }); } /// @notice Helper function to determine if there is sufficient gas remaining within the context /// to guarantee that the minimum gas requirement for a call will be met as well as /// optionally reserving a specified amount of gas for after the call has concluded. /// @param _minGas The minimum amount of gas that may be passed to the target context. /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution /// of the target context. /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target /// context as well as reserve `_reservedGas` for the caller after the execution of /// the target context. /// @dev !!!!! FOOTGUN ALERT !!!!! /// 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the /// `CALL` opcode's `address_access_cost`, `positive_value_cost`, and /// `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is /// still possible to self-rekt by initiating a withdrawal with a minimum gas limit /// that does not account for the `memory_expansion_cost` & `code_execution_cost` /// factors of the dynamic cost of the `CALL` opcode. /// 2.) This function should *directly* precede the external call if possible. There is an /// added buffer to account for gas consumed between this check and the call, but it /// is only 5,700 gas. /// 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call /// frame may be passed to a subcontext, we need to ensure that the gas will not be /// truncated. /// 4.) Use wisely. This function is not a silver bullet. function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63)))) } return _hasMinGas; } /// @notice Perform a low level call without copying any returndata. This function /// will revert if the call cannot be performed with the specified minimum /// gas. /// @param _target Address to call /// @param _minGas The minimum amount of gas that may be passed to the call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } }
src/libraries/trie/SecureMerkleTrie.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { MerkleTrie } from "./MerkleTrie.sol"; /// @title SecureMerkleTrie /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input /// keys. Ethereum's state trie hashes input keys before storing them. library SecureMerkleTrie { /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie. /// @param _key Key of the node to search for, as a hex string. /// @param _value Value of the node to search for, as a hex string. /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle /// trees, this proof is executed top-down and consists of a list of RLP-encoded /// nodes that make a path down to the target node. /// @param _root Known root of the Merkle trie. Used to verify that the included proof is /// correctly constructed. /// @return valid_ Whether or not the proof is valid. function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes[] memory _proof, bytes32 _root ) internal pure returns (bool valid_) { bytes memory key = _getSecureKey(_key); valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root); } /// @notice Retrieves the value associated with a given key. /// @param _key Key to search for, as hex bytes. /// @param _proof Merkle trie inclusion proof for the key. /// @param _root Known root of the Merkle trie. /// @return value_ Value of the key if it exists. function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) { bytes memory key = _getSecureKey(_key); value_ = MerkleTrie.get(key, _proof, _root); } /// @notice Computes the hashed version of the input key. /// @param _key Key to hash. /// @return hash_ Hashed version of the key. function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) { hash_ = abi.encodePacked(keccak256(_key)); } }
src/libraries/Predeploys.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Predeploys /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system. // This excludes the preinstalls (non-protocol contracts). library Predeploys { /// @notice Number of predeploy-namespace addresses reserved for protocol usage. uint256 internal constant PREDEPLOY_COUNT = 2048; /// @custom:legacy /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated /// L2ToL1MessagePasser contract instead. address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000; /// @custom:legacy /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger /// or access tx.origin (or msg.sender) in a L1 to L2 transaction instead. /// Not embedded into new OP-Stack chains. address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001; /// @custom:legacy /// @notice Address of the DeployerWhitelist predeploy. No longer active. address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002; /// @notice Address of the canonical WETH contract. address internal constant WETH = 0x4200000000000000000000000000000000000006; /// @notice Address of the L2CrossDomainMessenger predeploy. address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007; /// @notice Address of the GasPriceOracle predeploy. Includes fee information /// and helpers for computing the L1 portion of the transaction fee. address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F; /// @notice Address of the L2StandardBridge predeploy. address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010; //// @notice Address of the SequencerFeeWallet predeploy. address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011; /// @notice Address of the OptimismMintableERC20Factory predeploy. address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012; /// @custom:legacy /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy /// instead, which exposes more information about the L1 state. address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013; /// @notice Address of the L2ERC721Bridge predeploy. address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014; /// @notice Address of the L1Block predeploy. address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015; /// @notice Address of the L2ToL1MessagePasser predeploy. address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016; /// @notice Address of the OptimismMintableERC721Factory predeploy. address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017; /// @notice Address of the ProxyAdmin predeploy. address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018; /// @notice Address of the BaseFeeVault predeploy. address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019; /// @notice Address of the L1FeeVault predeploy. address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A; /// @notice Address of the SchemaRegistry predeploy. address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020; /// @notice Address of the EAS predeploy. address internal constant EAS = 0x4200000000000000000000000000000000000021; /// @notice Address of the GovernanceToken predeploy. address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042; /// @custom:legacy /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the /// state trie as of the Bedrock upgrade. Contract has been locked and write functions /// can no longer be accessed. address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000; /// @notice Address of the CrossL2Inbox predeploy. address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022; /// @notice Address of the L2ToL2CrossDomainMessenger predeploy. address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023; /// @notice Returns the name of the predeploy at the given address. function getName(address _addr) internal pure returns (string memory out_) { require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy"); if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser"; if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender"; if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist"; if (_addr == WETH) return "WETH"; if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger"; if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle"; if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge"; if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault"; if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory"; if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber"; if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge"; if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block"; if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser"; if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory"; if (_addr == PROXY_ADMIN) return "ProxyAdmin"; if (_addr == BASE_FEE_VAULT) return "BaseFeeVault"; if (_addr == L1_FEE_VAULT) return "L1FeeVault"; if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry"; if (_addr == EAS) return "EAS"; if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken"; if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH"; if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox"; if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger"; revert("Predeploys: unnamed predeploy"); } /// @notice Returns true if the predeploy is not proxied. function notProxied(address _addr) internal pure returns (bool) { return _addr == GOVERNANCE_TOKEN || _addr == WETH; } /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains. function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) { return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN || (_useInterop && _addr == CROSS_L2_INBOX) || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER); } function isPredeployNamespace(address _addr) internal pure returns (bool) { return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11; } /// @notice Function to compute the expected address of the predeploy implementation /// in the genesis state. function predeployToCodeNamespace(address _addr) internal pure returns (address) { require( isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses" ); return address( uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000))) ); } }
lib/solady/src/utils/LibString.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for converting numbers into strings and other string operations. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol) /// /// Note: /// For performance and bytecode compactness, most of the string operations are restricted to /// byte strings (7-bit ASCII), except where otherwise specified. /// Usage of byte string operations on charsets with runes spanning two or more bytes /// can lead to undefined behavior. library LibString { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The length of the output is too small to contain all the hex digits. error HexLengthInsufficient(); /// @dev The length of the string is more than 32 bytes. error TooBigForSmallString(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The constant returned when the `search` is not found in the string. uint256 internal constant NOT_FOUND = type(uint256).max; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* DECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the base 10 decimal representation of `value`. function toString(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. str := add(mload(0x40), 0x80) // Update the free memory pointer to allocate. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str let w := not(0) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := add(str, w) // `sub(str, 1)`. // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } /// @dev Returns the base 10 decimal representation of `value`. function toString(int256 value) internal pure returns (string memory str) { if (value >= 0) { return toString(uint256(value)); } unchecked { str = toString(uint256(-value)); } /// @solidity memory-safe-assembly assembly { // We still have some spare memory space on the left, // as we have allocated 3 words (96 bytes) for up to 78 digits. let length := mload(str) // Load the string length. mstore(str, 0x2d) // Store the '-' character. str := sub(str, 1) // Move back the string pointer by a byte. mstore(str, add(length, 1)) // Update the string length. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HEXADECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2 + 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) { str = toHexStringNoPrefix(value, length); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexStringNoPrefix(uint256 value, uint256 length) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length. // We add 0x20 to the total and round down to a multiple of 0x20. // (0x20 + 0x20 + 0x02 + 0x20) = 0x62. str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f))) // Allocate the memory. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end to calculate the length later. let end := str // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let start := sub(str, add(length, length)) let w := not(1) // Tsk. let temp := value // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for {} 1 {} { str := add(str, w) // `sub(str, 2)`. mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(xor(str, start)) { break } } if temp { mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`. revert(0x1c, 0x04) } // Compute the string's length. let strLength := sub(end, str) // Move the pointer and write the length. str := sub(str, 0x20) mstore(str, strLength) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2 + 2` bytes. function toHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x". /// The output excludes leading "0" from the `toHexString` output. /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`. function toMinimalHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present. let strLength := add(mload(str), 2) // Compute the length. mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero. str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero. mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output excludes leading "0" from the `toHexStringNoPrefix` output. /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`. function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present. let strLength := mload(str) // Get the length. str := add(str, o) // Move the pointer, accounting for leading zero. mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2` bytes. function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x40 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0. str := add(mload(0x40), 0x80) // Allocate the memory. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end to calculate the length later. let end := str // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let w := not(1) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := add(str, w) // `sub(str, 2)`. mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(temp) { break } } // Compute the string's length. let strLength := sub(end, str) // Move the pointer and write the length. str := sub(str, 0x20) mstore(str, strLength) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte, /// and the alphabets are capitalized conditionally according to /// https://eips.ethereum.org/EIPS/eip-55 function toHexStringChecksummed(address value) internal pure returns (string memory str) { str = toHexString(value); /// @solidity memory-safe-assembly assembly { let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...` let o := add(str, 0x22) let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... ` let t := shl(240, 136) // `0b10001000 << 240` for { let i := 0 } 1 {} { mstore(add(i, i), mul(t, byte(i, hashed))) i := add(i, 1) if eq(i, 20) { break } } mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask))))) o := add(o, 0x20) mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask))))) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. function toHexString(address value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(address value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { str := mload(0x40) // Allocate the memory. // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x28 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80. mstore(0x40, add(str, 0x80)) // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) str := add(str, 2) mstore(str, 40) let o := add(str, 0x20) mstore(add(o, 40), 0) value := shl(96, value) // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let i := 0 } 1 {} { let p := add(o, add(i, i)) let temp := byte(i, value) mstore8(add(p, 1), mload(and(temp, 15))) mstore8(p, mload(shr(4, temp))) i := add(i, 1) if eq(i, 20) { break } } } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexString(bytes memory raw) internal pure returns (string memory str) { str = toHexStringNoPrefix(raw); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { let length := mload(raw) str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix. mstore(str, add(length, length)) // Store the length of the output. // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let o := add(str, 0x20) let end := add(raw, length) for {} iszero(eq(raw, end)) {} { raw := add(raw, 1) mstore8(add(o, 1), mload(and(mload(raw), 15))) mstore8(o, mload(and(shr(4, mload(raw)), 15))) o := add(o, 2) } mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate the memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RUNE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the number of UTF characters in the string. function runeCount(string memory s) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { mstore(0x00, div(not(0), 255)) mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506) let o := add(s, 0x20) let end := add(o, mload(s)) for { result := 1 } 1 { result := add(result, 1) } { o := add(o, byte(0, mload(shr(250, mload(o))))) if iszero(lt(o, end)) { break } } } } } /// @dev Returns if this string is a 7-bit ASCII string. /// (i.e. all characters codes are in [0..127]) function is7BitASCII(string memory s) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let mask := shl(7, div(not(0), 255)) result := 1 let n := mload(s) if n { let o := add(s, 0x20) let end := add(o, n) let last := mload(end) mstore(end, 0) for {} 1 {} { if and(mask, mload(o)) { result := 0 break } o := add(o, 0x20) if iszero(lt(o, end)) { break } } mstore(end, last) } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // For performance and bytecode compactness, byte string operations are restricted // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets. // Usage of byte string operations on charsets with runes spanning two or more bytes // can lead to undefined behavior. /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`. function replace(string memory subject, string memory search, string memory replacement) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) let replacementLength := mload(replacement) subject := add(subject, 0x20) search := add(search, 0x20) replacement := add(replacement, 0x20) result := add(mload(0x40), 0x20) let subjectEnd := add(subject, subjectLength) if iszero(gt(searchLength, subjectLength)) { let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1) let h := 0 if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) } let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Copy the `replacement` one word at a time. for { let o := 0 } 1 {} { mstore(add(result, o), mload(add(replacement, o))) o := add(o, 0x20) if iszero(lt(o, replacementLength)) { break } } result := add(result, replacementLength) subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } } let resultRemainder := result result := add(mload(0x40), 0x20) let k := add(sub(resultRemainder, result), sub(subjectEnd, subject)) // Copy the rest of the string one word at a time. for {} lt(subject, subjectEnd) {} { mstore(resultRemainder, mload(subject)) resultRemainder := add(resultRemainder, 0x20) subject := add(subject, 0x20) } result := sub(result, 0x20) let last := add(add(result, 0x20), k) // Zeroize the slot after the string. mstore(last, 0) mstore(0x40, add(last, 0x20)) // Allocate the memory. mstore(result, k) // Store the length. } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for { let subjectLength := mload(subject) } 1 {} { if iszero(mload(search)) { if iszero(gt(from, subjectLength)) { result := from break } result := subjectLength break } let searchLength := mload(search) let subjectStart := add(subject, 0x20) result := not(0) // Initialize to `NOT_FOUND`. subject := add(subjectStart, from) let end := add(sub(add(subjectStart, subjectLength), searchLength), 1) let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(add(search, 0x20)) if iszero(and(lt(subject, end), lt(from, subjectLength))) { break } if iszero(lt(searchLength, 0x20)) { for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if iszero(shr(m, xor(mload(subject), s))) { if eq(keccak256(subject, searchLength), h) { result := sub(subject, subjectStart) break } } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } for {} 1 {} { if iszero(shr(m, xor(mload(subject), s))) { result := sub(subject, subjectStart) break } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = indexOf(subject, search, 0); } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { result := not(0) // Initialize to `NOT_FOUND`. let searchLength := mload(search) if gt(searchLength, mload(subject)) { break } let w := result let fromMax := sub(mload(subject), searchLength) if iszero(gt(fromMax, from)) { from := fromMax } let end := add(add(subject, 0x20), w) subject := add(add(subject, 0x20), from) if iszero(gt(subject, end)) { break } // As this function is not too often used, // we shall simply use keccak256 for smaller bytecode size. for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if eq(keccak256(subject, searchLength), h) { result := sub(subject, add(end, 1)) break } subject := add(subject, w) // `sub(subject, 1)`. if iszero(gt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = lastIndexOf(subject, search, uint256(int256(-1))); } /// @dev Returns true if `search` is found in `subject`, false otherwise. function contains(string memory subject, string memory search) internal pure returns (bool) { return indexOf(subject, search) != NOT_FOUND; } /// @dev Returns whether `subject` starts with `search`. function startsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( iszero(gt(searchLength, mload(subject))), eq( keccak256(add(subject, 0x20), searchLength), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns whether `subject` ends with `search`. function endsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) let subjectLength := mload(subject) // Whether `search` is not longer than `subject`. let withinRange := iszero(gt(searchLength, subjectLength)) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( withinRange, eq( keccak256( // `subject + 0x20 + max(subjectLength - searchLength, 0)`. add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))), searchLength ), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns `subject` repeated `times`. function repeat(string memory subject, uint256 times) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(or(iszero(times), iszero(subjectLength))) { subject := add(subject, 0x20) result := mload(0x40) let output := add(result, 0x20) for {} 1 {} { // Copy the `subject` one word at a time. for { let o := 0 } 1 {} { mstore(add(output, o), mload(add(subject, o))) o := add(o, 0x20) if iszero(lt(o, subjectLength)) { break } } output := add(output, subjectLength) times := sub(times, 1) if iszero(times) { break } } mstore(output, 0) // Zeroize the slot after the string. let resultLength := sub(output, add(result, 0x20)) mstore(result, resultLength) // Store the length. // Allocate the memory. mstore(0x40, add(result, add(resultLength, 0x20))) } } } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. function slice(string memory subject, uint256 start, uint256 end) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(gt(subjectLength, end)) { end := subjectLength } if iszero(gt(subjectLength, start)) { start := subjectLength } if lt(start, end) { result := mload(0x40) let resultLength := sub(end, start) mstore(result, resultLength) subject := add(subject, start) let w := not(0x1f) // Copy the `subject` one word at a time, backwards. for { let o := and(add(resultLength, 0x1f), w) } 1 {} { mstore(add(result, o), mload(add(subject, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(result, 0x20), resultLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(result, and(add(resultLength, 0x3f), w))) } } } /// @dev Returns a copy of `subject` sliced from `start` to the end of the string. /// `start` is a byte offset. function slice(string memory subject, uint256 start) internal pure returns (string memory result) { result = slice(subject, start, uint256(int256(-1))); } /// @dev Returns all the indices of `search` in `subject`. /// The indices are byte offsets. function indicesOf(string memory subject, string memory search) internal pure returns (uint256[] memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) if iszero(gt(searchLength, subjectLength)) { subject := add(subject, 0x20) search := add(search, 0x20) result := add(mload(0x40), 0x20) let subjectStart := subject let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1) let h := 0 if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) } let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Append to `result`. mstore(result, sub(subject, subjectStart)) result := add(result, 0x20) // Advance `subject` by `searchLength`. subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } let resultEnd := result // Assign `result` to the free memory pointer. result := mload(0x40) // Store the length of `result`. mstore(result, shr(5, sub(resultEnd, add(result, 0x20)))) // Allocate memory for result. // We allocate one more word, so this array can be recycled for {split}. mstore(0x40, add(resultEnd, 0x20)) } } } /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string. function split(string memory subject, string memory delimiter) internal pure returns (string[] memory result) { uint256[] memory indices = indicesOf(subject, delimiter); /// @solidity memory-safe-assembly assembly { let w := not(0x1f) let indexPtr := add(indices, 0x20) let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1))) mstore(add(indicesEnd, w), mload(subject)) mstore(indices, add(mload(indices), 1)) let prevIndex := 0 for {} 1 {} { let index := mload(indexPtr) mstore(indexPtr, 0x60) if iszero(eq(index, prevIndex)) { let element := mload(0x40) let elementLength := sub(index, prevIndex) mstore(element, elementLength) // Copy the `subject` one word at a time, backwards. for { let o := and(add(elementLength, 0x1f), w) } 1 {} { mstore(add(element, o), mload(add(add(subject, prevIndex), o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(element, 0x20), elementLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(element, and(add(elementLength, 0x3f), w))) // Store the `element` into the array. mstore(indexPtr, element) } prevIndex := add(index, mload(delimiter)) indexPtr := add(indexPtr, 0x20) if iszero(lt(indexPtr, indicesEnd)) { break } } result := indices if iszero(mload(delimiter)) { result := add(indices, 0x20) mstore(result, sub(mload(indices), 2)) } } } /// @dev Returns a concatenated string of `a` and `b`. /// Cheaper than `string.concat()` and does not de-align the free memory pointer. function concat(string memory a, string memory b) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let w := not(0x1f) result := mload(0x40) let aLength := mload(a) // Copy `a` one word at a time, backwards. for { let o := and(add(aLength, 0x20), w) } 1 {} { mstore(add(result, o), mload(add(a, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let bLength := mload(b) let output := add(result, aLength) // Copy `b` one word at a time, backwards. for { let o := and(add(bLength, 0x20), w) } 1 {} { mstore(add(output, o), mload(add(b, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let totalLength := add(aLength, bLength) let last := add(add(result, 0x20), totalLength) // Zeroize the slot after the string. mstore(last, 0) // Stores the length. mstore(result, totalLength) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, and(add(last, 0x1f), w)) } } /// @dev Returns a copy of the string in either lowercase or UPPERCASE. /// WARNING! This function is only compatible with 7-bit ASCII strings. function toCase(string memory subject, bool toUpper) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let length := mload(subject) if length { result := add(mload(0x40), 0x20) subject := add(subject, 1) let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff) let w := not(0) for { let o := length } 1 {} { o := add(o, w) let b := and(0xff, mload(add(subject, o))) mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20))) if iszero(o) { break } } result := mload(0x40) mstore(result, length) // Store the length. let last := add(add(result, 0x20), length) mstore(last, 0) // Zeroize the slot after the string. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } } /// @dev Returns a string from a small bytes32 string. /// `s` must be null-terminated, or behavior will be undefined. function fromSmallString(bytes32 s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let n := 0 for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'. mstore(result, n) let o := add(result, 0x20) mstore(o, s) mstore(add(o, n), 0) mstore(0x40, add(result, 0x40)) } } /// @dev Returns the small string, with all bytes after the first null byte zeroized. function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'. mstore(0x00, s) mstore(result, 0x00) result := mload(0x00) } } /// @dev Returns the string as a normalized null-terminated small string. function toSmallString(string memory s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { result := mload(s) if iszero(lt(result, 33)) { mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`. revert(0x1c, 0x04) } result := shl(shl(3, sub(32, result)), mload(add(s, result))) } } /// @dev Returns a lowercased copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function lower(string memory subject) internal pure returns (string memory result) { result = toCase(subject, false); } /// @dev Returns an UPPERCASED copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function upper(string memory subject) internal pure returns (string memory result) { result = toCase(subject, true); } /// @dev Escapes the string to be used within HTML tags. function escapeHTML(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) // Store the bytes of the packed offsets and strides into the scratch space. // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6. mstore(0x1f, 0x900094) mstore(0x08, 0xc0000000a6ab) // Store ""&'<>" into the scratch space. mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) // Not in `["\"","'","&","<",">"]`. if iszero(and(shl(c, 1), 0x500000c400000000)) { mstore8(result, c) result := add(result, 1) continue } let t := shr(248, mload(c)) mstore(result, mload(and(t, 0x1f))) result := add(result, shr(5, t)) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes. function escapeJSON(string memory s, bool addDoubleQuotes) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } // Store "\\u0000" in scratch space. // Store "0123456789abcdef" in scratch space. // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`. // into the scratch space. mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672) // Bitmask for detecting `["\"","\\"]`. let e := or(shl(0x22, 1), shl(0x5c, 1)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) if iszero(lt(c, 0x20)) { if iszero(and(shl(c, 1), e)) { // Not in `["\"","\\"]`. mstore8(result, c) result := add(result, 1) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), c) result := add(result, 2) continue } if iszero(and(shl(c, 1), 0x3700)) { // Not in `["\b","\t","\n","\f","\d"]`. mstore8(0x1d, mload(shr(4, c))) // Hex value. mstore8(0x1e, mload(and(c, 15))) // Hex value. mstore(result, mload(0x19)) // "\\u00XX". result := add(result, 6) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), mload(add(c, 8))) result := add(result, 2) } if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. function escapeJSON(string memory s) internal pure returns (string memory result) { result = escapeJSON(s, false); } /// @dev Returns whether `a` equals `b`. function eq(string memory a, string memory b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b))) } } /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string. function eqs(string memory a, bytes32 b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { // These should be evaluated on compile time, as far as possible. let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`. let x := not(or(m, or(b, add(m, and(b, m))))) let r := shl(7, iszero(iszero(shr(128, x)))) r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x)))))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))), xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20))))) } } /// @dev Packs a single string with its length into a single word. /// Returns `bytes32(0)` if the length is zero or greater than 31. function packOne(string memory a) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { // We don't need to zero right pad the string, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes. mload(add(a, 0x1f)), // `length != 0 && length < 32`. Abuses underflow. // Assumes that the length is valid and within the block gas limit. lt(sub(mload(a), 1), 0x1f) ) } } /// @dev Unpacks a string packed using {packOne}. /// Returns the empty string if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packOne}, the output behavior is undefined. function unpackOne(bytes32 packed) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // Grab the free memory pointer. result := mload(0x40) // Allocate 2 words (1 for the length, 1 for the bytes). mstore(0x40, add(result, 0x40)) // Zeroize the length slot. mstore(result, 0) // Store the length and bytes. mstore(add(result, 0x1f), packed) // Right pad with zeroes. mstore(add(add(result, 0x20), mload(result)), 0) } } /// @dev Packs two strings with their lengths into a single word. /// Returns `bytes32(0)` if combined length is zero or greater than 30. function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let aLength := mload(a) // We don't need to zero right pad the strings, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes of `a` and `b`. or( shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))), mload(sub(add(b, 0x1e), aLength)) ), // `totalLength != 0 && totalLength < 31`. Abuses underflow. // Assumes that the lengths are valid and within the block gas limit. lt(sub(add(aLength, mload(b)), 1), 0x1e) ) } } /// @dev Unpacks strings packed using {packTwo}. /// Returns the empty strings if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packTwo}, the output behavior is undefined. function unpackTwo(bytes32 packed) internal pure returns (string memory resultA, string memory resultB) { /// @solidity memory-safe-assembly assembly { // Grab the free memory pointer. resultA := mload(0x40) resultB := add(resultA, 0x40) // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words. mstore(0x40, add(resultB, 0x40)) // Zeroize the length slots. mstore(resultA, 0) mstore(resultB, 0) // Store the lengths and bytes. mstore(add(resultA, 0x1f), packed) mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA)))) // Right pad with zeroes. mstore(add(add(resultA, 0x20), mload(resultA)), 0) mstore(add(add(resultB, 0x20), mload(resultB)), 0) } } /// @dev Directly returns `a` without copying. function directReturn(string memory a) internal pure { assembly { // Assumes that the string does not start from the scratch space. let retStart := sub(a, 0x20) let retSize := add(mload(a), 0x40) // Right pad with zeroes. Just in case the string is produced // by a method that doesn't zero right pad. mstore(add(retStart, retSize), 0) // Store the return offset. mstore(retStart, 0x20) // End the transaction, returning the string. return(retStart, retSize) } } }
src/libraries/Hashing.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "src/libraries/Types.sol"; import { Encoding } from "src/libraries/Encoding.sol"; /// @title Hashing /// @notice Hashing handles Optimism's various different hashing schemes. library Hashing { /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a /// given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 /// system. /// @param _tx User deposit transaction to hash. /// @return Hash of the RLP encoded L2 deposit transaction. function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash /// of the L2 transaction that corresponds to a deposit is unique and is /// deterministically generated from L1 transaction data. /// @param _l1BlockHash Hash of the L1 block where the deposit was included. /// @param _logIndex The index of the log that created the deposit transaction. /// @return Hash of the deposit transaction's "source hash". function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /// @notice Hashes the cross domain message based on the version that is encoded into the /// message nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Hashed cross domain message. function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /// @notice Hashes a cross domain message based on the V0 (legacy) encoding. /// @param _target Address of the target of the message. /// @param _sender Address of the sender of the message. /// @param _data Data to send with the message. /// @param _nonce Message nonce. /// @return Hashed cross domain message. function hashCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce)); } /// @notice Hashes a cross domain message based on the V1 (current) encoding. /// @param _nonce Message nonce. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Hashed cross domain message. function hashCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data)); } /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract /// @param _tx Withdrawal transaction to hash. /// @return Hashed withdrawal transaction. function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)); } /// @notice Hashes the various elements of an output root proof into an output root hash which /// can be used to check if the proof is valid. /// @param _outputRootProof Output root proof which should hash to an output root. /// @return Hashed output root proof. function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.latestBlockhash ) ); } }
src/libraries/Constants.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; /// @title Constants /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just /// the stuff used in multiple contracts. Constants that only apply to a single contract /// should be defined in that contract instead. library Constants { /// @notice Special address to be used as the tx origin for gas estimation calls in the /// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if /// the minimum gas limit specified by the user is not actually enough to execute the /// given message and you're attempting to estimate the actual necessary gas limit. We /// use address(1) because it's the ecrecover precompile and therefore guaranteed to /// never have any code on any EVM chain. address internal constant ESTIMATION_ADDRESS = address(1); /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the /// CrossDomainMessenger contracts before an actual sender is set. This value is /// non-zero to reduce the gas cost of message passing transactions. address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /// @notice The storage slot that holds the address of a proxy implementation. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)` bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /// @notice The storage slot that holds the address of the owner. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)` bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /// @notice The address that represents ether when dealing with ERC20 token addresses. address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; /// @notice The address that represents the system caller responsible for L1 attributes /// transactions. address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001; /// @notice Returns the default values for the ResourceConfig. These are the recommended values /// for a production network. function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } }
src/L1/SystemConfig.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; import { Storage } from "src/libraries/Storage.sol"; import { Constants } from "src/libraries/Constants.sol"; import { OptimismPortal } from "src/L1/OptimismPortal.sol"; import { GasPayingToken, IGasToken } from "src/libraries/GasPayingToken.sol"; import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; /// @title SystemConfig /// @notice The SystemConfig contract is used to manage configuration of an Optimism network. /// All configuration is stored on L1 and picked up by L2 as part of the derviation of /// the L2 chain. contract SystemConfig is OwnableUpgradeable, ISemver, IGasToken { /// @notice Enum representing different types of updates. /// @custom:value BATCHER Represents an update to the batcher hash. /// @custom:value GAS_CONFIG Represents an update to txn fee config on L2. /// @custom:value GAS_LIMIT Represents an update to gas limit on L2. /// @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe /// block distrubution. enum UpdateType { BATCHER, GAS_CONFIG, GAS_LIMIT, UNSAFE_BLOCK_SIGNER } /// @notice Struct representing the addresses of L1 system contracts. These should be the /// contracts that users interact with (not implementations for proxied contracts) /// and are network specific. struct Addresses { address l1CrossDomainMessenger; address l1ERC721Bridge; address l1StandardBridge; address disputeGameFactory; address optimismPortal; address optimismMintableERC20Factory; address gasPayingToken; } /// @notice Version identifier, used for upgrades. uint256 public constant VERSION = 0; /// @notice Storage slot that the unsafe block signer is stored at. /// Storing it at this deterministic storage slot allows for decoupling the storage /// layout from the way that `solc` lays out storage. The `op-node` uses a storage /// proof to fetch this value. /// @dev NOTE: this value will be migrated to another storage slot in a future version. /// User input should not be placed in storage in this contract until this migration /// happens. It is unlikely that keccak second preimage resistance will be broken, /// but it is better to be safe than sorry. bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner"); /// @notice Storage slot that the L1CrossDomainMessenger address is stored at. bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT = bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1); /// @notice Storage slot that the L1ERC721Bridge address is stored at. bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1); /// @notice Storage slot that the L1StandardBridge address is stored at. bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1); /// @notice Storage slot that the OptimismPortal address is stored at. bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1); /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at. bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT = bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1); /// @notice Storage slot that the batch inbox address is stored at. bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1); /// @notice Storage slot for block at which the op-node can start searching for logs from. bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1); /// @notice Storage slot for the DisputeGameFactory address. bytes32 public constant DISPUTE_GAME_FACTORY_SLOT = bytes32(uint256(keccak256("systemconfig.disputegamefactory")) - 1); /// @notice The number of decimals that the gas paying token has. uint8 internal constant GAS_PAYING_TOKEN_DECIMALS = 18; /// @notice The maximum gas limit that can be set for L2 blocks. This limit is used to enforce that the blocks /// on L2 are not too large to process and prove. Over time, this value can be increased as various /// optimizations and improvements are made to the system at large. uint64 internal constant MAX_GAS_LIMIT = 200_000_000; /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation. /// Deprecated since the Ecotone network upgrade uint256 public overhead; /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation. /// The most significant byte is used to determine the version since the /// Ecotone network upgrade. uint256 public scalar; /// @notice Identifier for the batcher. /// For version 1 of this configuration, this is represented as an address left-padded /// with zeros to 32 bytes. bytes32 public batcherHash; /// @notice L2 block gas limit. uint64 public gasLimit; /// @notice Basefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade. uint32 public basefeeScalar; /// @notice Blobbasefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade. uint32 public blobbasefeeScalar; /// @notice The configuration for the deposit fee market. /// Used by the OptimismPortal to meter the cost of buying L2 gas on L1. /// Set as internal with a getter so that the struct is returned instead of a tuple. ResourceMetering.ResourceConfig internal _resourceConfig; /// @notice Emitted when configuration is updated. /// @param version SystemConfig version. /// @param updateType Type of update. /// @param data Encoded update data. event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data); /// @notice Semantic version. /// @custom:semver 2.3.0-beta.2 function version() public pure virtual returns (string memory) { return "2.3.0-beta.2"; } /// @notice Constructs the SystemConfig contract. Cannot set /// the owner to `address(0)` due to the Ownable contract's /// implementation, so set it to `address(0xdEaD)` /// @dev START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value /// in the singleton and is skipped by initialize when setting the start block. constructor() { Storage.setUint(START_BLOCK_SLOT, type(uint256).max); initialize({ _owner: address(0xdEaD), _basefeeScalar: 0, _blobbasefeeScalar: 0, _batcherHash: bytes32(0), _gasLimit: 1, _unsafeBlockSigner: address(0), _config: ResourceMetering.ResourceConfig({ maxResourceLimit: 1, elasticityMultiplier: 1, baseFeeMaxChangeDenominator: 2, minimumBaseFee: 0, systemTxMaxGas: 0, maximumBaseFee: 0 }), _batchInbox: address(0), _addresses: SystemConfig.Addresses({ l1CrossDomainMessenger: address(0), l1ERC721Bridge: address(0), l1StandardBridge: address(0), disputeGameFactory: address(0), optimismPortal: address(0), optimismMintableERC20Factory: address(0), gasPayingToken: address(0) }) }); } /// @notice Initializer. /// The resource config must be set before the require check. /// @param _owner Initial owner of the contract. /// @param _basefeeScalar Initial basefee scalar value. /// @param _blobbasefeeScalar Initial blobbasefee scalar value. /// @param _batcherHash Initial batcher hash. /// @param _gasLimit Initial gas limit. /// @param _unsafeBlockSigner Initial unsafe block signer address. /// @param _config Initial ResourceConfig. /// @param _batchInbox Batch inbox address. An identifier for the op-node to find /// canonical data. /// @param _addresses Set of L1 contract addresses. These should be the proxies. function initialize( address _owner, uint32 _basefeeScalar, uint32 _blobbasefeeScalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, ResourceMetering.ResourceConfig memory _config, address _batchInbox, SystemConfig.Addresses memory _addresses ) public initializer { __Ownable_init(); transferOwnership(_owner); // These are set in ascending order of their UpdateTypes. _setBatcherHash(_batcherHash); _setGasConfigEcotone({ _basefeeScalar: _basefeeScalar, _blobbasefeeScalar: _blobbasefeeScalar }); _setGasLimit(_gasLimit); Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner); Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox); Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger); Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge); Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge); Storage.setAddress(DISPUTE_GAME_FACTORY_SLOT, _addresses.disputeGameFactory); Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal); Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory); _setStartBlock(); _setGasPayingToken(_addresses.gasPayingToken); _setResourceConfig(_config); require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); } /// @notice Returns the minimum L2 gas limit that can be safely set for the system to /// operate. The L2 gas limit must be larger than or equal to the amount of /// gas that is allocated for deposits per block plus the amount of gas that /// is allocated for the system transaction. /// This function is used to determine if changes to parameters are safe. /// @return uint64 Minimum gas limit. function minimumGasLimit() public view returns (uint64) { return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas); } /// @notice Returns the maximum L2 gas limit that can be safely set for the system to /// operate. This bound is used to prevent the gas limit from being set too high /// and causing the system to be unable to process and/or prove L2 blocks. /// @return uint64 Maximum gas limit. function maximumGasLimit() public pure returns (uint64) { return MAX_GAS_LIMIT; } /// @notice High level getter for the unsafe block signer address. /// Unsafe blocks can be propagated across the p2p network if they are signed by the /// key corresponding to this address. /// @return addr_ Address of the unsafe block signer. function unsafeBlockSigner() public view returns (address addr_) { addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT); } /// @notice Getter for the L1CrossDomainMessenger address. function l1CrossDomainMessenger() external view returns (address addr_) { addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT); } /// @notice Getter for the L1ERC721Bridge address. function l1ERC721Bridge() external view returns (address addr_) { addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT); } /// @notice Getter for the L1StandardBridge address. function l1StandardBridge() external view returns (address addr_) { addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT); } /// @notice Getter for the DisputeGameFactory address. function disputeGameFactory() external view returns (address addr_) { addr_ = Storage.getAddress(DISPUTE_GAME_FACTORY_SLOT); } /// @notice Getter for the OptimismPortal address. function optimismPortal() public view returns (address addr_) { addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT); } /// @notice Getter for the OptimismMintableERC20Factory address. function optimismMintableERC20Factory() external view returns (address addr_) { addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT); } /// @notice Getter for the BatchInbox address. function batchInbox() external view returns (address addr_) { addr_ = Storage.getAddress(BATCH_INBOX_SLOT); } /// @notice Getter for the StartBlock number. function startBlock() external view returns (uint256 startBlock_) { startBlock_ = Storage.getUint(START_BLOCK_SLOT); } /// @notice Getter for the gas paying asset address. function gasPayingToken() public view returns (address addr_, uint8 decimals_) { (addr_, decimals_) = GasPayingToken.getToken(); } /// @notice Getter for custom gas token paying networks. Returns true if the /// network uses a custom gas token. function isCustomGasToken() public view returns (bool) { (address token,) = gasPayingToken(); return token != Constants.ETHER; } /// @notice Getter for the gas paying token name. function gasPayingTokenName() external view returns (string memory name_) { name_ = GasPayingToken.getName(); } /// @notice Getter for the gas paying token symbol. function gasPayingTokenSymbol() external view returns (string memory symbol_) { symbol_ = GasPayingToken.getSymbol(); } /// @notice Internal setter for the gas paying token address, includes validation. /// The token must not already be set and must be non zero and not the ether address /// to set the token address. This prevents the token address from being changed /// and makes it explicitly opt-in to use custom gas token. /// @param _token Address of the gas paying token. function _setGasPayingToken(address _token) internal virtual { if (_token != address(0) && _token != Constants.ETHER && !isCustomGasToken()) { require( ERC20(_token).decimals() == GAS_PAYING_TOKEN_DECIMALS, "SystemConfig: bad decimals of gas paying token" ); bytes32 name = GasPayingToken.sanitize(ERC20(_token).name()); bytes32 symbol = GasPayingToken.sanitize(ERC20(_token).symbol()); // Set the gas paying token in storage and in the OptimismPortal. GasPayingToken.set({ _token: _token, _decimals: GAS_PAYING_TOKEN_DECIMALS, _name: name, _symbol: symbol }); OptimismPortal(payable(optimismPortal())).setGasPayingToken({ _token: _token, _decimals: GAS_PAYING_TOKEN_DECIMALS, _name: name, _symbol: symbol }); } } /// @notice Updates the unsafe block signer address. Can only be called by the owner. /// @param _unsafeBlockSigner New unsafe block signer address. function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner { _setUnsafeBlockSigner(_unsafeBlockSigner); } /// @notice Updates the unsafe block signer address. /// @param _unsafeBlockSigner New unsafe block signer address. function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal { Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner); bytes memory data = abi.encode(_unsafeBlockSigner); emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data); } /// @notice Updates the batcher hash. Can only be called by the owner. /// @param _batcherHash New batcher hash. function setBatcherHash(bytes32 _batcherHash) external onlyOwner { _setBatcherHash(_batcherHash); } /// @notice Internal function for updating the batcher hash. /// @param _batcherHash New batcher hash. function _setBatcherHash(bytes32 _batcherHash) internal { batcherHash = _batcherHash; bytes memory data = abi.encode(_batcherHash); emit ConfigUpdate(VERSION, UpdateType.BATCHER, data); } /// @notice Updates gas config. Can only be called by the owner. /// Deprecated in favor of setGasConfigEcotone since the Ecotone upgrade. /// @param _overhead New overhead value. /// @param _scalar New scalar value. function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner { _setGasConfig(_overhead, _scalar); } /// @notice Internal function for updating the gas config. /// @param _overhead New overhead value. /// @param _scalar New scalar value. function _setGasConfig(uint256 _overhead, uint256 _scalar) internal { require((uint256(0xff) << 248) & _scalar == 0, "SystemConfig: scalar exceeds max."); overhead = _overhead; scalar = _scalar; bytes memory data = abi.encode(_overhead, _scalar); emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data); } /// @notice Updates gas config as of the Ecotone upgrade. Can only be called by the owner. /// @param _basefeeScalar New basefeeScalar value. /// @param _blobbasefeeScalar New blobbasefeeScalar value. function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external onlyOwner { _setGasConfigEcotone(_basefeeScalar, _blobbasefeeScalar); } /// @notice Internal function for updating the fee scalars as of the Ecotone upgrade. /// @param _basefeeScalar New basefeeScalar value. /// @param _blobbasefeeScalar New blobbasefeeScalar value. function _setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) internal { basefeeScalar = _basefeeScalar; blobbasefeeScalar = _blobbasefeeScalar; scalar = (uint256(0x01) << 248) | (uint256(_blobbasefeeScalar) << 32) | _basefeeScalar; bytes memory data = abi.encode(overhead, scalar); emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data); } /// @notice Updates the L2 gas limit. Can only be called by the owner. /// @param _gasLimit New gas limit. function setGasLimit(uint64 _gasLimit) external onlyOwner { _setGasLimit(_gasLimit); } /// @notice Internal function for updating the L2 gas limit. /// @param _gasLimit New gas limit. function _setGasLimit(uint64 _gasLimit) internal { require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); require(_gasLimit <= maximumGasLimit(), "SystemConfig: gas limit too high"); gasLimit = _gasLimit; bytes memory data = abi.encode(_gasLimit); emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data); } /// @notice Sets the start block in a backwards compatible way. Proxies /// that were initialized before the startBlock existed in storage /// can have their start block set by a user provided override. /// A start block of 0 indicates that there is no override and the /// start block will be set by `block.number`. /// @dev This logic is used to patch legacy deployments with new storage values. /// Use the override if it is provided as a non zero value and the value /// has not already been set in storage. Use `block.number` if the value /// has already been set in storage function _setStartBlock() internal { if (Storage.getUint(START_BLOCK_SLOT) == 0) { Storage.setUint(START_BLOCK_SLOT, block.number); } } /// @notice A getter for the resource config. /// Ensures that the struct is returned instead of a tuple. /// @return ResourceConfig function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) { return _resourceConfig; } /// @notice An internal setter for the resource config. /// Ensures that the config is sane before storing it by checking for invariants. /// In the future, this method may emit an event that the `op-node` picks up /// for when the resource config is changed. /// @param _config The new resource config. function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal { // Min base fee must be less than or equal to max base fee. require( _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base" ); // Base fee change denominator must be greater than 1. require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1"); // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit. // The gas limit must be increased before these values can be increased. require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low"); // Elasticity multiplier must be greater than 0. require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0"); // No precision loss when computing target resource limit. require( ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier) == _config.maxResourceLimit, "SystemConfig: precision loss with target resource limit" ); _resourceConfig = _config; } }
src/libraries/Types.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Types /// @notice Contains various types used throughout the Optimism contract system. library Types { /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1 /// timestamp that the output root is posted. This timestamp is used to verify that the /// finalization period has passed since the output root was submitted. /// @custom:field outputRoot Hash of the L2 output. /// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. /// @custom:field l2BlockNumber L2 block number that the output corresponds to. struct OutputProposal { bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /// @notice Struct representing the elements that are hashed together to generate an output root /// which itself represents a snapshot of the L2 state. /// @custom:field version Version of the output root. /// @custom:field stateRoot Root of the state trie at the block of this output. /// @custom:field messagePasserStorageRoot Root of the message passer storage trie. /// @custom:field latestBlockhash Hash of the block this output was generated from. struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 latestBlockhash; } /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end /// user (as opposed to a system deposit transaction generated by the system). /// @custom:field from Address of the sender of the transaction. /// @custom:field to Address of the recipient of the transaction. /// @custom:field isCreation True if the transaction is a contract creation. /// @custom:field value Value to send to the recipient. /// @custom:field mint Amount of ETH to mint. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. /// @custom:field l1BlockHash Hash of the block the transaction was submitted in. /// @custom:field logIndex Index of the log in the block the transaction was submitted in. struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint256 logIndex; } /// @notice Struct representing a withdrawal transaction. /// @custom:field nonce Nonce of the withdrawal transaction /// @custom:field sender Address of the sender of the transaction. /// @custom:field target Address of the recipient of the transaction. /// @custom:field value Value to send to the recipient. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } }
src/L1/L2OutputOracle.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { Types } from "src/libraries/Types.sol"; import { Constants } from "src/libraries/Constants.sol"; /// @custom:proxied /// @title L2OutputOracle /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a /// commitment to the state of the L2 chain. Other contracts like the OptimismPortal use /// these outputs to verify information about the state of L2. contract L2OutputOracle is Initializable, ISemver { /// @notice The number of the first L2 block recorded in this contract. uint256 public startingBlockNumber; /// @notice The timestamp of the first L2 block recorded in this contract. uint256 public startingTimestamp; /// @notice An array of L2 output proposals. Types.OutputProposal[] internal l2Outputs; /// @notice The interval in L2 blocks at which checkpoints must be submitted. /// @custom:network-specific uint256 public submissionInterval; /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified. /// @custom:network-specific uint256 public l2BlockTime; /// @notice The address of the challenger. Can be updated via upgrade. /// @custom:network-specific address public challenger; /// @notice The address of the proposer. Can be updated via upgrade. /// @custom:network-specific address public proposer; /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized. /// @custom:network-specific uint256 public finalizationPeriodSeconds; /// @notice Emitted when an output is proposed. /// @param outputRoot The output root. /// @param l2OutputIndex The index of the output in the l2Outputs array. /// @param l2BlockNumber The L2 block number of the output root. /// @param l1Timestamp The L1 timestamp when proposed. event OutputProposed( bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp ); /// @notice Emitted when outputs are deleted. /// @param prevNextOutputIndex Next L2 output index before the deletion. /// @param newNextOutputIndex Next L2 output index after the deletion. event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex); /// @notice Semantic version. /// @custom:semver 1.8.0 string public constant version = "1.8.0"; /// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as /// in the getting-started config. constructor() { initialize({ _submissionInterval: 1, _l2BlockTime: 1, _startingBlockNumber: 0, _startingTimestamp: 0, _proposer: address(0), _challenger: address(0), _finalizationPeriodSeconds: 0 }); } /// @notice Initializer. /// @param _submissionInterval Interval in blocks at which checkpoints must be submitted. /// @param _l2BlockTime The time per L2 block, in seconds. /// @param _startingBlockNumber The number of the first L2 block. /// @param _startingTimestamp The timestamp of the first L2 block. /// @param _proposer The address of the proposer. /// @param _challenger The address of the challenger. /// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal /// can be finalized. function initialize( uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _startingBlockNumber, uint256 _startingTimestamp, address _proposer, address _challenger, uint256 _finalizationPeriodSeconds ) public initializer { require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0"); require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0"); require( _startingTimestamp <= block.timestamp, "L2OutputOracle: starting L2 timestamp must be less than current time" ); submissionInterval = _submissionInterval; l2BlockTime = _l2BlockTime; startingBlockNumber = _startingBlockNumber; startingTimestamp = _startingTimestamp; proposer = _proposer; challenger = _challenger; finalizationPeriodSeconds = _finalizationPeriodSeconds; } /// @notice Getter for the submissionInterval. /// Public getter is legacy and will be removed in the future. Use `submissionInterval` instead. /// @return Submission interval. /// @custom:legacy function SUBMISSION_INTERVAL() external view returns (uint256) { return submissionInterval; } /// @notice Getter for the l2BlockTime. /// Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead. /// @return L2 block time. /// @custom:legacy function L2_BLOCK_TIME() external view returns (uint256) { return l2BlockTime; } /// @notice Getter for the challenger address. /// Public getter is legacy and will be removed in the future. Use `challenger` instead. /// @return Address of the challenger. /// @custom:legacy function CHALLENGER() external view returns (address) { return challenger; } /// @notice Getter for the proposer address. /// Public getter is legacy and will be removed in the future. Use `proposer` instead. /// @return Address of the proposer. /// @custom:legacy function PROPOSER() external view returns (address) { return proposer; } /// @notice Getter for the finalizationPeriodSeconds. /// Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead. /// @return Finalization period in seconds. /// @custom:legacy function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) { return finalizationPeriodSeconds; } /// @notice Deletes all output proposals after and including the proposal that corresponds to /// the given output index. Only the challenger address can delete outputs. /// @param _l2OutputIndex Index of the first L2 output to be deleted. /// All outputs after this output will also be deleted. function deleteL2Outputs(uint256 _l2OutputIndex) external { require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs"); // Make sure we're not *increasing* the length of the array. require( _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index" ); // Do not allow deleting any outputs that have already been finalized. require( block.timestamp - l2Outputs[_l2OutputIndex].timestamp < finalizationPeriodSeconds, "L2OutputOracle: cannot delete outputs that have already been finalized" ); uint256 prevNextL2OutputIndex = nextOutputIndex(); // Use assembly to delete the array elements because Solidity doesn't allow it. assembly { sstore(l2Outputs.slot, _l2OutputIndex) } emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex); } /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block. /// The timestamp must be equal to the current value returned by `nextTimestamp()` in /// order to be accepted. This function may only be called by the Proposer. /// @param _outputRoot The L2 output of the checkpoint block. /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot. /// @param _l1BlockHash A block hash which must be included in the current chain. /// @param _l1BlockNumber The block number with the specified block hash. function proposeL2Output( bytes32 _outputRoot, uint256 _l2BlockNumber, bytes32 _l1BlockHash, uint256 _l1BlockNumber ) external payable { require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs"); require( _l2BlockNumber == nextBlockNumber(), "L2OutputOracle: block number must be equal to next expected block number" ); require( computeL2Timestamp(_l2BlockNumber) < block.timestamp, "L2OutputOracle: cannot propose L2 output in the future" ); require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash"); if (_l1BlockHash != bytes32(0)) { // This check allows the proposer to propose an output based on a given L1 block, // without fear that it will be reorged out. // It will also revert if the blockheight provided is more than 256 blocks behind the // chain tip (as the hash will return as zero). This does open the door to a griefing // attack in which the proposer's submission is censored until the block is no longer // retrievable, if the proposer is experiencing this attack it can simply leave out the // blockhash value, and delay submission until it is confident that the L1 block is // finalized. require( blockhash(_l1BlockNumber) == _l1BlockHash, "L2OutputOracle: block hash does not match the hash at the expected height" ); } emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp); l2Outputs.push( Types.OutputProposal({ outputRoot: _outputRoot, timestamp: uint128(block.timestamp), l2BlockNumber: uint128(_l2BlockNumber) }) ); } /// @notice Returns an output by index. Needed to return a struct instead of a tuple. /// @param _l2OutputIndex Index of the output to return. /// @return The output at the given index. function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) { return l2Outputs[_l2OutputIndex]; } /// @notice Returns the index of the L2 output that checkpoints a given L2 block number. /// Uses a binary search to find the first output greater than or equal to the given /// block. /// @param _l2BlockNumber L2 block number to find a checkpoint for. /// @return Index of the first checkpoint that commits to the given L2 block number. function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) { // Make sure an output for this block number has actually been proposed. require( _l2BlockNumber <= latestBlockNumber(), "L2OutputOracle: cannot get output for a block that has not been proposed" ); // Make sure there's at least one output proposed. require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet"); // Find the output via binary search, guaranteed to exist. uint256 lo = 0; uint256 hi = l2Outputs.length; while (lo < hi) { uint256 mid = (lo + hi) / 2; if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) { lo = mid + 1; } else { hi = mid; } } return lo; } /// @notice Returns the L2 output proposal that checkpoints a given L2 block number. /// Uses a binary search to find the first output greater than or equal to the given /// block. /// @param _l2BlockNumber L2 block number to find a checkpoint for. /// @return First checkpoint that commits to the given L2 block number. function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) { return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)]; } /// @notice Returns the number of outputs that have been proposed. /// Will revert if no outputs have been proposed yet. /// @return The number of outputs that have been proposed. function latestOutputIndex() external view returns (uint256) { return l2Outputs.length - 1; } /// @notice Returns the index of the next output to be proposed. /// @return The index of the next output to be proposed. function nextOutputIndex() public view returns (uint256) { return l2Outputs.length; } /// @notice Returns the block number of the latest submitted L2 output proposal. /// If no proposals been submitted yet then this function will return the starting /// block number. /// @return Latest submitted L2 block number. function latestBlockNumber() public view returns (uint256) { return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber; } /// @notice Computes the block number of the next L2 block that needs to be checkpointed. /// @return Next L2 block number. function nextBlockNumber() public view returns (uint256) { return latestBlockNumber() + submissionInterval; } /// @notice Returns the L2 timestamp corresponding to a given L2 block number. /// @param _l2BlockNumber The L2 block number of the target block. /// @return L2 timestamp of the given block. function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) { return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime); } }
lib/openzeppelin-contracts/contracts/token/ERC20/extensions/draft-IERC20Permit.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
src/libraries/PortalErrors.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice Error for when a deposit or withdrawal is to a bad target. error BadTarget(); /// @notice Error for when a deposit has too much calldata. error LargeCalldata(); /// @notice Error for when a deposit has too small of a gas limit. error SmallGasLimit(); /// @notice Error for when a withdrawal transfer fails. error TransferFailed(); /// @notice Error for when a method is called that only works when using a custom gas token. error OnlyCustomGasToken(); /// @notice Error for when a method cannot be called with non zero CALLVALUE. error NoValue(); /// @notice Error for an unauthorized CALLER. error Unauthorized(); /// @notice Error for when a method cannot be called when paused. This could be renamed /// to `Paused` in the future, but it collides with the `Paused` event. error CallPaused(); /// @notice Error for special gas estimation. error GasEstimation(); /// @notice Error for when a method is being reentered. error NonReentrant();
src/libraries/L1BlockErrors.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice Error returns when a non-depositor account tries to set L1 block values. error NotDepositor(); /// @notice Error when a chain ID is not in the interop dependency set. error NotDependency(); /// @notice Error when the interop dependency set size is too large. error DependencySetSizeTooLarge(); /// @notice Error when a chain ID already in the interop dependency set is attempted to be added. error AlreadyDependency(); /// @notice Error when the chain's chain ID is attempted to be removed from the interop dependency set. error CantRemovedDependency();
src/libraries/rlp/RLPErrors.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice The length of an RLP item must be greater than zero to be decodable error EmptyItem(); /// @notice The decoded item type for list is not a list item error UnexpectedString(); /// @notice The RLP item has an invalid data remainder error InvalidDataRemainder(); /// @notice Decoded item type for bytes is not a string item error UnexpectedList(); /// @notice The length of the content must be greater than the RLP item length error ContentLengthMismatch(); /// @notice Invalid RLP header for RLP item error InvalidHeader();
lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
src/libraries/rlp/RLPWriter.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode /// @title RLPWriter /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's /// RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor /// modifications to improve legibility. library RLPWriter { /// @notice RLP encodes a byte string. /// @param _in The byte string to encode. /// @return out_ The RLP encoded string in bytes. function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) { if (_in.length == 1 && uint8(_in[0]) < 128) { out_ = _in; } else { out_ = abi.encodePacked(_writeLength(_in.length, 128), _in); } } /// @notice RLP encodes a list of RLP encoded byte byte strings. /// @param _in The list of RLP encoded byte strings. /// @return list_ The RLP encoded list of items in bytes. function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) { list_ = _flatten(_in); list_ = abi.encodePacked(_writeLength(list_.length, 192), list_); } /// @notice RLP encodes a string. /// @param _in The string to encode. /// @return out_ The RLP encoded string in bytes. function writeString(string memory _in) internal pure returns (bytes memory out_) { out_ = writeBytes(bytes(_in)); } /// @notice RLP encodes an address. /// @param _in The address to encode. /// @return out_ The RLP encoded address in bytes. function writeAddress(address _in) internal pure returns (bytes memory out_) { out_ = writeBytes(abi.encodePacked(_in)); } /// @notice RLP encodes a uint. /// @param _in The uint256 to encode. /// @return out_ The RLP encoded uint256 in bytes. function writeUint(uint256 _in) internal pure returns (bytes memory out_) { out_ = writeBytes(_toBinary(_in)); } /// @notice RLP encodes a bool. /// @param _in The bool to encode. /// @return out_ The RLP encoded bool in bytes. function writeBool(bool _in) internal pure returns (bytes memory out_) { out_ = new bytes(1); out_[0] = (_in ? bytes1(0x01) : bytes1(0x80)); } /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. /// @param _len The length of the string or the payload. /// @param _offset 128 if item is string, 192 if item is list. /// @return out_ RLP encoded bytes. function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) { if (_len < 56) { out_ = new bytes(1); out_[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } out_ = new bytes(lenLen + 1); out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256)); } } } /// @notice Encode integer in big endian binary form with no leading zeroes. /// @param _x The integer to encode. /// @return out_ RLP encoded bytes. function _toBinary(uint256 _x) private pure returns (bytes memory out_) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } out_ = new bytes(32 - i); for (uint256 j = 0; j < out_.length; j++) { out_[j] = b[i++]; } } /// @custom:attribution https://github.com/Arachnid/solidity-stringutils /// @notice Copies a piece of memory to another location. /// @param _dest Destination location. /// @param _src Source location. /// @param _len Length of memory to copy. function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256 ** (32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder /// @notice Flattens a list of byte strings into one byte string. /// @param _list List of byte strings to flatten. /// @return out_ The flattened byte string. function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } out_ = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(out_, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } } }
lib/openzeppelin-contracts/contracts/utils/Context.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
lib/openzeppelin-contracts/contracts/proxy/utils/Initializable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
src/L2/L1Block.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ISemver } from "src/universal/ISemver.sol"; import { Constants } from "src/libraries/Constants.sol"; import { GasPayingToken, IGasToken } from "src/libraries/GasPayingToken.sol"; import "src/libraries/L1BlockErrors.sol"; /// @custom:proxied /// @custom:predeploy 0x4200000000000000000000000000000000000015 /// @title L1Block /// @notice The L1Block predeploy gives users access to information about the last known L1 block. /// Values within this contract are updated once per epoch (every L1 block) and can only be /// set by the "depositor" account, a special system address. Depositor account transactions /// are created by the protocol whenever we move to a new epoch. contract L1Block is ISemver, IGasToken { /// @notice Event emitted when the gas paying token is set. event GasPayingTokenSet(address indexed token, uint8 indexed decimals, bytes32 name, bytes32 symbol); /// @notice Address of the special depositor account. function DEPOSITOR_ACCOUNT() public pure returns (address addr_) { addr_ = Constants.DEPOSITOR_ACCOUNT; } /// @notice The latest L1 block number known by the L2 system. uint64 public number; /// @notice The latest L1 timestamp known by the L2 system. uint64 public timestamp; /// @notice The latest L1 base fee. uint256 public basefee; /// @notice The latest L1 blockhash. bytes32 public hash; /// @notice The number of L2 blocks in the same epoch. uint64 public sequenceNumber; /// @notice The scalar value applied to the L1 blob base fee portion of the blob-capable L1 cost func. uint32 public blobBaseFeeScalar; /// @notice The scalar value applied to the L1 base fee portion of the blob-capable L1 cost func. uint32 public baseFeeScalar; /// @notice The versioned hash to authenticate the batcher by. bytes32 public batcherHash; /// @notice The overhead value applied to the L1 portion of the transaction fee. /// @custom:legacy uint256 public l1FeeOverhead; /// @notice The scalar value applied to the L1 portion of the transaction fee. /// @custom:legacy uint256 public l1FeeScalar; /// @notice The latest L1 blob base fee. uint256 public blobBaseFee; /// @custom:semver 1.4.1-beta.1 function version() public pure virtual returns (string memory) { return "1.4.1-beta.1"; } /// @notice Returns the gas paying token, its decimals, name and symbol. /// If nothing is set in state, then it means ether is used. function gasPayingToken() public view returns (address addr_, uint8 decimals_) { (addr_, decimals_) = GasPayingToken.getToken(); } /// @notice Returns the gas paying token name. /// If nothing is set in state, then it means ether is used. function gasPayingTokenName() public view returns (string memory name_) { name_ = GasPayingToken.getName(); } /// @notice Returns the gas paying token symbol. /// If nothing is set in state, then it means ether is used. function gasPayingTokenSymbol() public view returns (string memory symbol_) { symbol_ = GasPayingToken.getSymbol(); } /// @notice Getter for custom gas token paying networks. Returns true if the /// network uses a custom gas token. function isCustomGasToken() public view returns (bool) { (address token,) = gasPayingToken(); return token != Constants.ETHER; } /// @custom:legacy /// @notice Updates the L1 block values. /// @param _number L1 blocknumber. /// @param _timestamp L1 timestamp. /// @param _basefee L1 basefee. /// @param _hash L1 blockhash. /// @param _sequenceNumber Number of L2 blocks since epoch start. /// @param _batcherHash Versioned hash to authenticate batcher by. /// @param _l1FeeOverhead L1 fee overhead. /// @param _l1FeeScalar L1 fee scalar. function setL1BlockValues( uint64 _number, uint64 _timestamp, uint256 _basefee, bytes32 _hash, uint64 _sequenceNumber, bytes32 _batcherHash, uint256 _l1FeeOverhead, uint256 _l1FeeScalar ) external { require(msg.sender == DEPOSITOR_ACCOUNT(), "L1Block: only the depositor account can set L1 block values"); number = _number; timestamp = _timestamp; basefee = _basefee; hash = _hash; sequenceNumber = _sequenceNumber; batcherHash = _batcherHash; l1FeeOverhead = _l1FeeOverhead; l1FeeScalar = _l1FeeScalar; } /// @notice Updates the L1 block values for an Ecotone upgraded chain. /// Params are packed and passed in as raw msg.data instead of ABI to reduce calldata size. /// Params are expected to be in the following order: /// 1. _baseFeeScalar L1 base fee scalar /// 2. _blobBaseFeeScalar L1 blob base fee scalar /// 3. _sequenceNumber Number of L2 blocks since epoch start. /// 4. _timestamp L1 timestamp. /// 5. _number L1 blocknumber. /// 6. _basefee L1 base fee. /// 7. _blobBaseFee L1 blob base fee. /// 8. _hash L1 blockhash. /// 9. _batcherHash Versioned hash to authenticate batcher by. function setL1BlockValuesEcotone() external { address depositor = DEPOSITOR_ACCOUNT(); assembly { // Revert if the caller is not the depositor account. if xor(caller(), depositor) { mstore(0x00, 0x3cc50b45) // 0x3cc50b45 is the 4-byte selector of "NotDepositor()" revert(0x1C, 0x04) // returns the stored 4-byte selector from above } // sequencenum (uint64), blobBaseFeeScalar (uint32), baseFeeScalar (uint32) sstore(sequenceNumber.slot, shr(128, calldataload(4))) // number (uint64) and timestamp (uint64) sstore(number.slot, shr(128, calldataload(20))) sstore(basefee.slot, calldataload(36)) // uint256 sstore(blobBaseFee.slot, calldataload(68)) // uint256 sstore(hash.slot, calldataload(100)) // bytes32 sstore(batcherHash.slot, calldataload(132)) // bytes32 } } /// @notice Sets the gas paying token for the L2 system. Can only be called by the special /// depositor account. This function is not called on every L2 block but instead /// only called by specially crafted L1 deposit transactions. function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external { if (msg.sender != DEPOSITOR_ACCOUNT()) revert NotDepositor(); GasPayingToken.set({ _token: _token, _decimals: _decimals, _name: _name, _symbol: _symbol }); emit GasPayingTokenSet({ token: _token, decimals: _decimals, name: _name, symbol: _symbol }); } }
src/libraries/Burn.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /// @title Burn /// @notice Utilities for burning stuff. library Burn { /// @notice Burns a given amount of ETH. /// @param _amount Amount of ETH to burn. function eth(uint256 _amount) internal { new Burner{ value: _amount }(); } /// @notice Burns a given amount of gas. /// @param _amount Amount of gas to burn. function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } } /// @title Burner /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to /// the contract from the circulating supply. Self-destructing is the only way to remove ETH /// from the circulating supply. contract Burner { constructor() payable { selfdestruct(payable(address(this))); } }
lib/openzeppelin-contracts-upgradeable/contracts/utils/ContextUpgradeable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; } _balances[to] += amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
src/libraries/Bytes.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Bytes /// @notice Bytes is a library for manipulating byte arrays. library Bytes { /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils /// @notice Slices a byte array with a given starting index and length. Returns a new byte array /// as opposed to a pointer to the original array. Will throw if trying to slice more /// bytes than exist in the array. /// @param _bytes Byte array to slice. /// @param _start Starting index of the slice. /// @param _length Length of the slice. /// @return Slice of the input byte array. function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) { unchecked { require(_length + 31 >= _length, "slice_overflow"); require(_start + _length >= _start, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); } bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } /// @notice Slices a byte array with a given starting index up to the end of the original byte /// array. Returns a new array rathern than a pointer to the original. /// @param _bytes Byte array to slice. /// @param _start Starting index of the slice. /// @return Slice of the input byte array. function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) { if (_start >= _bytes.length) { return bytes(""); } return slice(_bytes, _start, _bytes.length - _start); } /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles. /// Resulting nibble array will be exactly twice as long as the input byte array. /// @param _bytes Input byte array to convert. /// @return Resulting nibble array. function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) { bytes memory _nibbles; assembly { // Grab a free memory offset for the new array _nibbles := mload(0x40) // Load the length of the passed bytes array from memory let bytesLength := mload(_bytes) // Calculate the length of the new nibble array // This is the length of the input array times 2 let nibblesLength := shl(0x01, bytesLength) // Update the free memory pointer to allocate memory for the new array. // To do this, we add the length of the new array + 32 bytes for the array length // rounded up to the nearest 32 byte boundary to the current free memory pointer. mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F)))) // Store the length of the new array in memory mstore(_nibbles, nibblesLength) // Store the memory offset of the _bytes array's contents on the stack let bytesStart := add(_bytes, 0x20) // Store the memory offset of the nibbles array's contents on the stack let nibblesStart := add(_nibbles, 0x20) // Loop through each byte in the input array for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } { // Get the starting offset of the next 2 bytes in the nibbles array let offset := add(nibblesStart, shl(0x01, i)) // Load the byte at the current index within the `_bytes` array let b := byte(0x00, mload(add(bytesStart, i))) // Pull out the first nibble and store it in the new array mstore8(offset, shr(0x04, b)) // Pull out the second nibble and store it in the new array mstore8(add(offset, 0x01), and(b, 0x0F)) } } return _nibbles; } /// @notice Compares two byte arrays by comparing their keccak256 hashes. /// @param _bytes First byte array to compare. /// @param _other Second byte array to compare. /// @return True if the two byte arrays are equal, false otherwise. function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) { return keccak256(_bytes) == keccak256(_other); } }
src/libraries/Arithmetic.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /// @title Arithmetic /// @notice Even more math than before. library Arithmetic { /// @notice Clamps a value between a minimum and maximum. /// @param _value The value to clamp. /// @param _min The minimum value. /// @param _max The maximum value. /// @return The clamped value. function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /// @notice (c)oefficient (d)enominator (exp)onentiation function. /// Returns the result of: c * (1 - 1/d)^exp. /// @param _coefficient Coefficient of the function. /// @param _denominator Fractional denominator. /// @param _exponent Power function exponent. /// @return Result of c * (1 - 1/d)^exp. function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } }
src/L1/SuperchainConfig.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { Storage } from "src/libraries/Storage.sol"; /// @custom:audit none This contracts is not yet audited. /// @title SuperchainConfig /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values. contract SuperchainConfig is Initializable, ISemver { /// @notice Enum representing different types of updates. /// @custom:value GUARDIAN Represents an update to the guardian. enum UpdateType { GUARDIAN } /// @notice Whether or not the Superchain is paused. bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1); /// @notice The address of the guardian, which can pause withdrawals from the System. /// It can only be modified by an upgrade. bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1); /// @notice Emitted when the pause is triggered. /// @param identifier A string helping to identify provenance of the pause transaction. event Paused(string identifier); /// @notice Emitted when the pause is lifted. event Unpaused(); /// @notice Emitted when configuration is updated. /// @param updateType Type of update. /// @param data Encoded update data. event ConfigUpdate(UpdateType indexed updateType, bytes data); /// @notice Semantic version. /// @custom:semver 1.1.0 string public constant version = "1.1.0"; /// @notice Constructs the SuperchainConfig contract. constructor() { initialize({ _guardian: address(0), _paused: false }); } /// @notice Initializer. /// @param _guardian Address of the guardian, can pause the OptimismPortal. /// @param _paused Initial paused status. function initialize(address _guardian, bool _paused) public initializer { _setGuardian(_guardian); if (_paused) { _pause("Initializer paused"); } } /// @notice Getter for the guardian address. function guardian() public view returns (address guardian_) { guardian_ = Storage.getAddress(GUARDIAN_SLOT); } /// @notice Getter for the current paused status. function paused() public view returns (bool paused_) { paused_ = Storage.getBool(PAUSED_SLOT); } /// @notice Pauses withdrawals. /// @param _identifier (Optional) A string to identify provenance of the pause transaction. function pause(string memory _identifier) external { require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause"); _pause(_identifier); } /// @notice Pauses withdrawals. /// @param _identifier (Optional) A string to identify provenance of the pause transaction. function _pause(string memory _identifier) internal { Storage.setBool(PAUSED_SLOT, true); emit Paused(_identifier); } /// @notice Unpauses withdrawals. function unpause() external { require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause"); Storage.setBool(PAUSED_SLOT, false); emit Unpaused(); } /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade /// will be required to change the guardian. /// @param _guardian The new guardian address. function _setGuardian(address _guardian) internal { Storage.setAddress(GUARDIAN_SLOT, _guardian); emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian)); } }
lib/openzeppelin-contracts/contracts/utils/math/SignedMath.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
lib/solmate/src/utils/FixedPointMathLib.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }
lib/openzeppelin-contracts-upgradeable/contracts/access/OwnableUpgradeable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
src/vendor/AddressAliasHelper.sol
// SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity ^0.8.0; library AddressAliasHelper { uint160 constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function that converts the address in the L1 that submitted a tx to /// the inbox to the msg.sender viewed in the L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed in the L2 to the /// address in the L1 that submitted a tx to the inbox /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } }
src/libraries/trie/MerkleTrie.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Bytes } from "../Bytes.sol"; import { RLPReader } from "../rlp/RLPReader.sol"; /// @title MerkleTrie /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie /// inclusion proofs. By default, this library assumes a hexary trie. One can change the /// trie radix constant to support other trie radixes. library MerkleTrie { /// @notice Struct representing a node in the trie. /// @custom:field encoded The RLP-encoded node. /// @custom:field decoded The RLP-decoded node. struct TrieNode { bytes encoded; RLPReader.RLPItem[] decoded; } /// @notice Determines the number of elements per branch node. uint256 internal constant TREE_RADIX = 16; /// @notice Branch nodes have TREE_RADIX elements and one value element. uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1; /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`. uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2; /// @notice Prefix for even-nibbled extension node paths. uint8 internal constant PREFIX_EXTENSION_EVEN = 0; /// @notice Prefix for odd-nibbled extension node paths. uint8 internal constant PREFIX_EXTENSION_ODD = 1; /// @notice Prefix for even-nibbled leaf node paths. uint8 internal constant PREFIX_LEAF_EVEN = 2; /// @notice Prefix for odd-nibbled leaf node paths. uint8 internal constant PREFIX_LEAF_ODD = 3; /// @notice Verifies a proof that a given key/value pair is present in the trie. /// @param _key Key of the node to search for, as a hex string. /// @param _value Value of the node to search for, as a hex string. /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle /// trees, this proof is executed top-down and consists of a list of RLP-encoded /// nodes that make a path down to the target node. /// @param _root Known root of the Merkle trie. Used to verify that the included proof is /// correctly constructed. /// @return valid_ Whether or not the proof is valid. function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes[] memory _proof, bytes32 _root ) internal pure returns (bool valid_) { valid_ = Bytes.equal(_value, get(_key, _proof, _root)); } /// @notice Retrieves the value associated with a given key. /// @param _key Key to search for, as hex bytes. /// @param _proof Merkle trie inclusion proof for the key. /// @param _root Known root of the Merkle trie. /// @return value_ Value of the key if it exists. function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) { require(_key.length > 0, "MerkleTrie: empty key"); TrieNode[] memory proof = _parseProof(_proof); bytes memory key = Bytes.toNibbles(_key); bytes memory currentNodeID = abi.encodePacked(_root); uint256 currentKeyIndex = 0; // Proof is top-down, so we start at the first element (root). for (uint256 i = 0; i < proof.length; i++) { TrieNode memory currentNode = proof[i]; // Key index should never exceed total key length or we'll be out of bounds. require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length"); if (currentKeyIndex == 0) { // First proof element is always the root node. require( Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID), "MerkleTrie: invalid root hash" ); } else if (currentNode.encoded.length >= 32) { // Nodes 32 bytes or larger are hashed inside branch nodes. require( Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID), "MerkleTrie: invalid large internal hash" ); } else { // Nodes smaller than 32 bytes aren't hashed. require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash"); } if (currentNode.decoded.length == BRANCH_NODE_LENGTH) { if (currentKeyIndex == key.length) { // Value is the last element of the decoded list (for branch nodes). There's // some ambiguity in the Merkle trie specification because bytes(0) is a // valid value to place into the trie, but for branch nodes bytes(0) can exist // even when the value wasn't explicitly placed there. Geth treats a value of // bytes(0) as "key does not exist" and so we do the same. value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]); require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)"); // Extra proof elements are not allowed. require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)"); return value_; } else { // We're not at the end of the key yet. // Figure out what the next node ID should be and continue. uint8 branchKey = uint8(key[currentKeyIndex]); RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey]; currentNodeID = _getNodeID(nextNode); currentKeyIndex += 1; } } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) { bytes memory path = _getNodePath(currentNode); uint8 prefix = uint8(path[0]); uint8 offset = 2 - (prefix % 2); bytes memory pathRemainder = Bytes.slice(path, offset); bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex); uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder); // Whether this is a leaf node or an extension node, the path remainder MUST be a // prefix of the key remainder (or be equal to the key remainder) or the proof is // considered invalid. require( pathRemainder.length == sharedNibbleLength, "MerkleTrie: path remainder must share all nibbles with key" ); if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) { // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid, // the key remainder must be exactly equal to the path remainder. We already // did the necessary byte comparison, so it's more efficient here to check that // the key remainder length equals the shared nibble length, which implies // equality with the path remainder (since we already did the same check with // the path remainder and the shared nibble length). require( keyRemainder.length == sharedNibbleLength, "MerkleTrie: key remainder must be identical to path remainder" ); // Our Merkle Trie is designed specifically for the purposes of the Ethereum // state trie. Empty values are not allowed in the state trie, so we can safely // say that if the value is empty, the key should not exist and the proof is // invalid. value_ = RLPReader.readBytes(currentNode.decoded[1]); require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)"); // Extra proof elements are not allowed. require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)"); return value_; } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) { // Prefix of 0 or 1 means this is an extension node. We move onto the next node // in the proof and increment the key index by the length of the path remainder // which is equal to the shared nibble length. currentNodeID = _getNodeID(currentNode.decoded[1]); currentKeyIndex += sharedNibbleLength; } else { revert("MerkleTrie: received a node with an unknown prefix"); } } else { revert("MerkleTrie: received an unparseable node"); } } revert("MerkleTrie: ran out of proof elements"); } /// @notice Parses an array of proof elements into a new array that contains both the original /// encoded element and the RLP-decoded element. /// @param _proof Array of proof elements to parse. /// @return proof_ Proof parsed into easily accessible structs. function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) { uint256 length = _proof.length; proof_ = new TrieNode[](length); for (uint256 i = 0; i < length;) { proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) }); unchecked { ++i; } } } /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the /// specification, but nodes < 32 bytes are not actually hashed. /// @param _node Node to pull an ID for. /// @return id_ ID for the node, depending on the size of its contents. function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) { id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node); } /// @notice Gets the path for a leaf or extension node. /// @param _node Node to get a path for. /// @return nibbles_ Node path, converted to an array of nibbles. function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) { nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0])); } /// @notice Utility; determines the number of nibbles shared between two nibble arrays. /// @param _a First nibble array. /// @param _b Second nibble array. /// @return shared_ Number of shared nibbles. function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) { uint256 max = (_a.length < _b.length) ? _a.length : _b.length; for (; shared_ < max && _a[shared_] == _b[shared_];) { unchecked { ++shared_; } } } }
src/L1/ResourceMetering.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Burn } from "src/libraries/Burn.sol"; import { Arithmetic } from "src/libraries/Arithmetic.sol"; /// @custom:upgradeable /// @title ResourceMetering /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing /// updates automatically based on current demand. abstract contract ResourceMetering is Initializable { /// @notice Error returned when too much gas resource is consumed. error OutOfGas(); /// @notice Represents the various parameters that control the way in which resources are /// metered. Corresponds to the EIP-1559 resource metering system. /// @custom:field prevBaseFee Base fee from the previous block(s). /// @custom:field prevBoughtGas Amount of gas bought so far in the current block. /// @custom:field prevBlockNum Last block number that the base fee was updated. struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas /// market. These values should be set with care as it is possible to set them in /// a way that breaks the deposit gas market. The target resource limit is defined as /// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a /// single word. There is additional space for additions in the future. /// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that /// can be purchased per block. /// @custom:field elasticityMultiplier Determines the target resource limit along with /// the resource limit. /// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. /// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this /// value. /// @custom:field systemTxMaxGas The amount of gas supplied to the system /// transaction. This should be set to the same /// number that the op-node sets as the gas limit /// for the system transaction. /// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this /// value. struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /// @notice EIP-1559 style gas parameters. ResourceParams public params; /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. uint256[48] private __gap; /// @notice Meters access to a function based an amount of a requested resource. /// @param _amount Amount of the resource requested. modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /// @notice An internal function that holds all of the logic for metering a resource. /// @param _amount Amount of the resource requested. /// @param _initialGas The amount of gas before any modifier execution. function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) { revert OutOfGas(); } // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /// @notice Adds an amount of L2 gas consumed to the prev bought gas params. This is meant to be used /// when L2 system transactions are generated from L1. /// @param _amount Amount of the L2 gas resource requested. function useGas(uint32 _amount) internal { params.prevBoughtGas += uint64(_amount); } /// @notice Virtual function that returns the resource config. /// Contracts that inherit this contract must implement this function. /// @return ResourceConfig function _resourceConfig() internal virtual returns (ResourceConfig memory); /// @notice Sets initial resource parameter values. /// This function must either be called by the initializer function of an upgradeable /// child contract. function __ResourceMetering_init() internal onlyInitializing { if (params.prevBlockNum == 0) { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } } }
src/libraries/Encoding.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "src/libraries/Types.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol"; /// @title Encoding /// @notice Encoding handles Optimism's various different encoding schemes. library Encoding { /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent /// to the L2 system. Useful for searching for a deposit in the L2 system. The /// transaction is prefixed with 0x7e to identify its EIP-2718 type. /// @param _tx User deposit transaction to encode. /// @return RLP encoded L2 deposit transaction. function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](8); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBool(false); raw[7] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /// @notice Encodes the cross domain message based on the version that is encoded into the /// message nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Encoded cross domain message. function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /// @notice Encodes a cross domain message based on the V0 (legacy) encoding. /// @param _target Address of the target of the message. /// @param _sender Address of the sender of the message. /// @param _data Data to send with the message. /// @param _nonce Message nonce. /// @return Encoded cross domain message. function encodeCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes memory) { return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce); } /// @notice Encodes a cross domain message based on the V1 (current) encoding. /// @param _nonce Message nonce. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Encoded cross domain message. function encodeCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /// @notice Adds a version number into the first two bytes of a message nonce. /// @param _nonce Message nonce to encode into. /// @param _version Version number to encode into the message nonce. /// @return Message nonce with version encoded into the first two bytes. function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /// @notice Pulls the version out of a version-encoded nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @return Nonce without encoded version. /// @return Version of the message. function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone /// @param baseFeeScalar L1 base fee Scalar /// @param blobBaseFeeScalar L1 blob base fee Scalar /// @param sequenceNumber Number of L2 blocks since epoch start. /// @param timestamp L1 timestamp. /// @param number L1 blocknumber. /// @param baseFee L1 base fee. /// @param blobBaseFee L1 blob base fee. /// @param hash L1 blockhash. /// @param batcherHash Versioned hash to authenticate batcher by. function encodeSetL1BlockValuesEcotone( uint32 baseFeeScalar, uint32 blobBaseFeeScalar, uint64 sequenceNumber, uint64 timestamp, uint64 number, uint256 baseFee, uint256 blobBaseFee, bytes32 hash, bytes32 batcherHash ) internal pure returns (bytes memory) { bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()")); return abi.encodePacked( functionSignature, baseFeeScalar, blobBaseFeeScalar, sequenceNumber, timestamp, number, baseFee, blobBaseFee, hash, batcherHash ); } /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop /// @param _baseFeeScalar L1 base fee Scalar /// @param _blobBaseFeeScalar L1 blob base fee Scalar /// @param _sequenceNumber Number of L2 blocks since epoch start. /// @param _timestamp L1 timestamp. /// @param _number L1 blocknumber. /// @param _baseFee L1 base fee. /// @param _blobBaseFee L1 blob base fee. /// @param _hash L1 blockhash. /// @param _batcherHash Versioned hash to authenticate batcher by. /// @param _dependencySet Array of the chain IDs in the interop dependency set. function encodeSetL1BlockValuesInterop( uint32 _baseFeeScalar, uint32 _blobBaseFeeScalar, uint64 _sequenceNumber, uint64 _timestamp, uint64 _number, uint256 _baseFee, uint256 _blobBaseFee, bytes32 _hash, bytes32 _batcherHash, uint256[] memory _dependencySet ) internal pure returns (bytes memory) { require(_dependencySet.length <= type(uint8).max, "Encoding: dependency set length is too large"); // Check that the batcher hash is just the address with 0 padding to the left for version 0. require(uint160(uint256(_batcherHash)) == uint256(_batcherHash), "Encoding: invalid batcher hash"); bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()")); return abi.encodePacked( functionSignature, _baseFeeScalar, _blobBaseFeeScalar, _sequenceNumber, _timestamp, _number, _baseFee, _blobBaseFee, _hash, _batcherHash, uint8(_dependencySet.length), _dependencySet ); } }
lib/openzeppelin-contracts/contracts/utils/math/Math.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } }
lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
src/libraries/GasPayingToken.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Storage } from "src/libraries/Storage.sol"; import { Constants } from "src/libraries/Constants.sol"; import { LibString } from "@solady/utils/LibString.sol"; /// @title IGasToken /// @notice Implemented by contracts that are aware of the custom gas token used /// by the L2 network. interface IGasToken { /// @notice Getter for the ERC20 token address that is used to pay for gas and its decimals. function gasPayingToken() external view returns (address, uint8); /// @notice Returns the gas token name. function gasPayingTokenName() external view returns (string memory); /// @notice Returns the gas token symbol. function gasPayingTokenSymbol() external view returns (string memory); /// @notice Returns true if the network uses a custom gas token. function isCustomGasToken() external view returns (bool); } /// @title GasPayingToken /// @notice Handles reading and writing the custom gas token to storage. /// To be used in any place where gas token information is read or /// written to state. If multiple contracts use this library, the /// values in storage should be kept in sync between them. library GasPayingToken { /// @notice The storage slot that contains the address and decimals of the gas paying token bytes32 internal constant GAS_PAYING_TOKEN_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtoken")) - 1); /// @notice The storage slot that contains the ERC20 `name()` of the gas paying token bytes32 internal constant GAS_PAYING_TOKEN_NAME_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtokenname")) - 1); /// @notice the storage slot that contains the ERC20 `symbol()` of the gas paying token bytes32 internal constant GAS_PAYING_TOKEN_SYMBOL_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtokensymbol")) - 1); /// @notice Reads the gas paying token and its decimals from the magic /// storage slot. If nothing is set in storage, then the ether /// address is returned instead. function getToken() internal view returns (address addr_, uint8 decimals_) { bytes32 slot = Storage.getBytes32(GAS_PAYING_TOKEN_SLOT); addr_ = address(uint160(uint256(slot) & uint256(type(uint160).max))); if (addr_ == address(0)) { addr_ = Constants.ETHER; decimals_ = 18; } else { decimals_ = uint8(uint256(slot) >> 160); } } /// @notice Reads the gas paying token's name from the magic storage slot. /// If nothing is set in storage, then the ether name, 'Ether', is returned instead. function getName() internal view returns (string memory name_) { (address addr,) = getToken(); if (addr == Constants.ETHER) { name_ = "Ether"; } else { name_ = LibString.fromSmallString(Storage.getBytes32(GAS_PAYING_TOKEN_NAME_SLOT)); } } /// @notice Reads the gas paying token's symbol from the magic storage slot. /// If nothing is set in storage, then the ether symbol, 'ETH', is returned instead. function getSymbol() internal view returns (string memory symbol_) { (address addr,) = getToken(); if (addr == Constants.ETHER) { symbol_ = "ETH"; } else { symbol_ = LibString.fromSmallString(Storage.getBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT)); } } /// @notice Writes the gas paying token, its decimals, name and symbol to the magic storage slot. function set(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) internal { Storage.setBytes32(GAS_PAYING_TOKEN_SLOT, bytes32(uint256(_decimals) << 160 | uint256(uint160(_token)))); Storage.setBytes32(GAS_PAYING_TOKEN_NAME_SLOT, _name); Storage.setBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT, _symbol); } /// @notice Maps a string to a normalized null-terminated small string. function sanitize(string memory _str) internal pure returns (bytes32) { require(bytes(_str).length <= 32, "GasPayingToken: string cannot be greater than 32 bytes"); return LibString.toSmallString(_str); } }
lib/openzeppelin-contracts-upgradeable/contracts/utils/AddressUpgradeable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
src/libraries/rlp/RLPReader.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.8; import "./RLPErrors.sol"; /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP /// @title RLPReader /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted /// from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with /// various tweaks to improve readability. library RLPReader { /// @notice Custom pointer type to avoid confusion between pointers and uint256s. type MemoryPointer is uint256; /// @notice RLP item types. /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list). /// @custom:value LIST_ITEM Represents an RLP list item. enum RLPItemType { DATA_ITEM, LIST_ITEM } /// @notice Struct representing an RLP item. /// @custom:field length Length of the RLP item. /// @custom:field ptr Pointer to the RLP item in memory. struct RLPItem { uint256 length; MemoryPointer ptr; } /// @notice Max list length that this library will accept. uint256 internal constant MAX_LIST_LENGTH = 32; /// @notice Converts bytes to a reference to memory position and length. /// @param _in Input bytes to convert. /// @return out_ Output memory reference. function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) { // Empty arrays are not RLP items. if (_in.length == 0) revert EmptyItem(); MemoryPointer ptr; assembly { ptr := add(_in, 32) } out_ = RLPItem({ length: _in.length, ptr: ptr }); } /// @notice Reads an RLP list value into a list of RLP items. /// @param _in RLP list value. /// @return out_ Decoded RLP list items. function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) { (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in); if (itemType != RLPItemType.LIST_ITEM) revert UnexpectedString(); if (listOffset + listLength != _in.length) revert InvalidDataRemainder(); // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by // writing to the length. Since we can't know the number of RLP items without looping over // the entire input, we'd have to loop twice to accurately size this array. It's easier to // simply set a reasonable maximum list length and decrease the size before we finish. out_ = new RLPItem[](MAX_LIST_LENGTH); uint256 itemCount = 0; uint256 offset = listOffset; while (offset < _in.length) { (uint256 itemOffset, uint256 itemLength,) = _decodeLength( RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) }) ); // We don't need to check itemCount < out.length explicitly because Solidity already // handles this check on our behalf, we'd just be wasting gas. out_[itemCount] = RLPItem({ length: itemLength + itemOffset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) }); itemCount += 1; offset += itemOffset + itemLength; } // Decrease the array size to match the actual item count. assembly { mstore(out_, itemCount) } } /// @notice Reads an RLP list value into a list of RLP items. /// @param _in RLP list value. /// @return out_ Decoded RLP list items. function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) { out_ = readList(toRLPItem(_in)); } /// @notice Reads an RLP bytes value into bytes. /// @param _in RLP bytes value. /// @return out_ Decoded bytes. function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) { (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in); if (itemType != RLPItemType.DATA_ITEM) revert UnexpectedList(); if (_in.length != itemOffset + itemLength) revert InvalidDataRemainder(); out_ = _copy(_in.ptr, itemOffset, itemLength); } /// @notice Reads an RLP bytes value into bytes. /// @param _in RLP bytes value. /// @return out_ Decoded bytes. function readBytes(bytes memory _in) internal pure returns (bytes memory out_) { out_ = readBytes(toRLPItem(_in)); } /// @notice Reads the raw bytes of an RLP item. /// @param _in RLP item to read. /// @return out_ Raw RLP bytes. function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) { out_ = _copy(_in.ptr, 0, _in.length); } /// @notice Decodes the length of an RLP item. /// @param _in RLP item to decode. /// @return offset_ Offset of the encoded data. /// @return length_ Length of the encoded data. /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM). function _decodeLength(RLPItem memory _in) private pure returns (uint256 offset_, uint256 length_, RLPItemType type_) { // Short-circuit if there's nothing to decode, note that we perform this check when // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass // that function and create an RLP item directly. So we need to check this anyway. if (_in.length == 0) revert EmptyItem(); MemoryPointer ptr = _in.ptr; uint256 prefix; assembly { prefix := byte(0, mload(ptr)) } if (prefix <= 0x7f) { // Single byte. return (0, 1, RLPItemType.DATA_ITEM); } else if (prefix <= 0xb7) { // Short string. // slither-disable-next-line variable-scope uint256 strLen = prefix - 0x80; if (_in.length <= strLen) revert ContentLengthMismatch(); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } if (strLen == 1 && firstByteOfContent < 0x80) revert InvalidHeader(); return (1, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xbf) { // Long string. uint256 lenOfStrLen = prefix - 0xb7; if (_in.length <= lenOfStrLen) revert ContentLengthMismatch(); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } if (firstByteOfContent == 0x00) revert InvalidHeader(); uint256 strLen; assembly { strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1))) } if (strLen <= 55) revert InvalidHeader(); if (_in.length <= lenOfStrLen + strLen) revert ContentLengthMismatch(); return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xf7) { // Short list. // slither-disable-next-line variable-scope uint256 listLen = prefix - 0xc0; if (_in.length <= listLen) revert ContentLengthMismatch(); return (1, listLen, RLPItemType.LIST_ITEM); } else { // Long list. uint256 lenOfListLen = prefix - 0xf7; if (_in.length <= lenOfListLen) revert ContentLengthMismatch(); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } if (firstByteOfContent == 0x00) revert InvalidHeader(); uint256 listLen; assembly { listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1))) } if (listLen <= 55) revert InvalidHeader(); if (_in.length <= lenOfListLen + listLen) revert ContentLengthMismatch(); return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM); } } /// @notice Copies the bytes from a memory location. /// @param _src Pointer to the location to read from. /// @param _offset Offset to start reading from. /// @param _length Number of bytes to read. /// @return out_ Copied bytes. function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) { out_ = new bytes(_length); if (_length == 0) { return out_; } // Mostly based on Solidity's copy_memory_to_memory: // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114 uint256 src = MemoryPointer.unwrap(_src) + _offset; assembly { let dest := add(out_, 32) let i := 0 for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) } if gt(i, _length) { mstore(add(dest, _length), 0) } } } }
lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/Initializable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
lib/openzeppelin-contracts/contracts/utils/Address.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
Compiler Settings
{"viaIR":false,"remappings":["@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/","@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/","@rari-capital/solmate/=lib/solmate/","@lib-keccak/=lib/lib-keccak/contracts/lib/","@solady/=lib/solady/src/","forge-std/=lib/forge-std/src/","ds-test/=lib/forge-std/lib/ds-test/src/","safe-contracts/=lib/safe-contracts/contracts/","kontrol-cheatcodes/=lib/kontrol-cheatcodes/src/","gelato/=lib/automate/contracts/","@solady-test/=lib/lib-keccak/lib/solady/test/","automate/=lib/automate/contracts/","erc4626-tests/=lib/automate/lib/openzeppelin-contracts/lib/erc4626-tests/","hardhat/=lib/automate/node_modules/hardhat/","lib-keccak/=lib/lib-keccak/contracts/","openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/","openzeppelin-contracts/=lib/openzeppelin-contracts/","prb-test/=lib/automate/lib/prb-test/src/","prb/-est/=lib/automate/lib/prb-test/src/","solady/=lib/solady/","solmate/=lib/solmate/src/"],"outputSelection":{"*":{"*":["abi","evm.bytecode","evm.deployedBytecode","evm.methodIdentifiers","metadata","storageLayout","devdoc","userdoc"],"":["ast"]}},"optimizer":{"runs":999999,"enabled":true},"metadata":{"useLiteralContent":false,"bytecodeHash":"none"},"libraries":{},"evmVersion":"london"}
Contract ABI
[{"type":"constructor","stateMutability":"nonpayable","inputs":[]},{"type":"error","name":"BadTarget","inputs":[]},{"type":"error","name":"CallPaused","inputs":[]},{"type":"error","name":"ContentLengthMismatch","inputs":[]},{"type":"error","name":"EmptyItem","inputs":[]},{"type":"error","name":"GasEstimation","inputs":[]},{"type":"error","name":"InvalidDataRemainder","inputs":[]},{"type":"error","name":"InvalidHeader","inputs":[]},{"type":"error","name":"LargeCalldata","inputs":[]},{"type":"error","name":"NoValue","inputs":[]},{"type":"error","name":"NonReentrant","inputs":[]},{"type":"error","name":"OnlyCustomGasToken","inputs":[]},{"type":"error","name":"OutOfGas","inputs":[]},{"type":"error","name":"SmallGasLimit","inputs":[]},{"type":"error","name":"TransferFailed","inputs":[]},{"type":"error","name":"Unauthorized","inputs":[]},{"type":"error","name":"UnexpectedList","inputs":[]},{"type":"error","name":"UnexpectedString","inputs":[]},{"type":"event","name":"Initialized","inputs":[{"type":"uint8","name":"version","internalType":"uint8","indexed":false}],"anonymous":false},{"type":"event","name":"TransactionDeposited","inputs":[{"type":"address","name":"from","internalType":"address","indexed":true},{"type":"address","name":"to","internalType":"address","indexed":true},{"type":"uint256","name":"version","internalType":"uint256","indexed":true},{"type":"bytes","name":"opaqueData","internalType":"bytes","indexed":false}],"anonymous":false},{"type":"event","name":"WithdrawalFinalized","inputs":[{"type":"bytes32","name":"withdrawalHash","internalType":"bytes32","indexed":true},{"type":"bool","name":"success","internalType":"bool","indexed":false}],"anonymous":false},{"type":"event","name":"WithdrawalProven","inputs":[{"type":"bytes32","name":"withdrawalHash","internalType":"bytes32","indexed":true},{"type":"address","name":"from","internalType":"address","indexed":true},{"type":"address","name":"to","internalType":"address","indexed":true}],"anonymous":false},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"balance","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"depositERC20Transaction","inputs":[{"type":"address","name":"_to","internalType":"address"},{"type":"uint256","name":"_mint","internalType":"uint256"},{"type":"uint256","name":"_value","internalType":"uint256"},{"type":"uint64","name":"_gasLimit","internalType":"uint64"},{"type":"bool","name":"_isCreation","internalType":"bool"},{"type":"bytes","name":"_data","internalType":"bytes"}]},{"type":"function","stateMutability":"payable","outputs":[],"name":"depositTransaction","inputs":[{"type":"address","name":"_to","internalType":"address"},{"type":"uint256","name":"_value","internalType":"uint256"},{"type":"uint64","name":"_gasLimit","internalType":"uint64"},{"type":"bool","name":"_isCreation","internalType":"bool"},{"type":"bytes","name":"_data","internalType":"bytes"}]},{"type":"function","stateMutability":"payable","outputs":[],"name":"donateETH","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"finalizeWithdrawalTransaction","inputs":[{"type":"tuple","name":"_tx","internalType":"struct Types.WithdrawalTransaction","components":[{"type":"uint256","name":"nonce","internalType":"uint256"},{"type":"address","name":"sender","internalType":"address"},{"type":"address","name":"target","internalType":"address"},{"type":"uint256","name":"value","internalType":"uint256"},{"type":"uint256","name":"gasLimit","internalType":"uint256"},{"type":"bytes","name":"data","internalType":"bytes"}]}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"finalizedWithdrawals","inputs":[{"type":"bytes32","name":"","internalType":"bytes32"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"guardian","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"initialize","inputs":[{"type":"address","name":"_l2Oracle","internalType":"contract L2OutputOracle"},{"type":"address","name":"_systemConfig","internalType":"contract SystemConfig"},{"type":"address","name":"_superchainConfig","internalType":"contract SuperchainConfig"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"isOutputFinalized","inputs":[{"type":"uint256","name":"_l2OutputIndex","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"contract L2OutputOracle"}],"name":"l2Oracle","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"l2Sender","inputs":[]},{"type":"function","stateMutability":"pure","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"minimumGasLimit","inputs":[{"type":"uint64","name":"_byteCount","internalType":"uint64"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint128","name":"prevBaseFee","internalType":"uint128"},{"type":"uint64","name":"prevBoughtGas","internalType":"uint64"},{"type":"uint64","name":"prevBlockNum","internalType":"uint64"}],"name":"params","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"paused_","internalType":"bool"}],"name":"paused","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"proveWithdrawalTransaction","inputs":[{"type":"tuple","name":"_tx","internalType":"struct Types.WithdrawalTransaction","components":[{"type":"uint256","name":"nonce","internalType":"uint256"},{"type":"address","name":"sender","internalType":"address"},{"type":"address","name":"target","internalType":"address"},{"type":"uint256","name":"value","internalType":"uint256"},{"type":"uint256","name":"gasLimit","internalType":"uint256"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"uint256","name":"_l2OutputIndex","internalType":"uint256"},{"type":"tuple","name":"_outputRootProof","internalType":"struct Types.OutputRootProof","components":[{"type":"bytes32","name":"version","internalType":"bytes32"},{"type":"bytes32","name":"stateRoot","internalType":"bytes32"},{"type":"bytes32","name":"messagePasserStorageRoot","internalType":"bytes32"},{"type":"bytes32","name":"latestBlockhash","internalType":"bytes32"}]},{"type":"bytes[]","name":"_withdrawalProof","internalType":"bytes[]"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"outputRoot","internalType":"bytes32"},{"type":"uint128","name":"timestamp","internalType":"uint128"},{"type":"uint128","name":"l2OutputIndex","internalType":"uint128"}],"name":"provenWithdrawals","inputs":[{"type":"bytes32","name":"","internalType":"bytes32"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setGasPayingToken","inputs":[{"type":"address","name":"_token","internalType":"address"},{"type":"uint8","name":"_decimals","internalType":"uint8"},{"type":"bytes32","name":"_name","internalType":"bytes32"},{"type":"bytes32","name":"_symbol","internalType":"bytes32"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"contract SuperchainConfig"}],"name":"superchainConfig","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"contract SystemConfig"}],"name":"systemConfig","inputs":[]},{"type":"function","stateMutability":"pure","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"version","inputs":[]},{"type":"receive","stateMutability":"payable"}]
Contract Creation Code
0x60806040523480156200001157600080fd5b50620000206000808062000026565b6200028f565b600054610100900460ff1615808015620000475750600054600160ff909116105b806200007757506200006430620001c160201b62001efd1760201c565b15801562000077575060005460ff166001145b620000e05760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b60648201526084015b60405180910390fd5b6000805460ff19166001179055801562000104576000805461ff0019166101001790555b603680546001600160a01b03199081166001600160a01b03878116919091179092556037805490911685831617905560358054610100600160a81b03191661010085841602179055603254166200016a57603280546001600160a01b03191661dead1790555b62000174620001d0565b8015620001bb576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50505050565b6001600160a01b03163b151590565b600054610100900460ff166200023d5760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b6064820152608401620000d7565b600154600160c01b90046001600160401b03166000036200028d5760408051606081018252633b9aca0080825260006020830152436001600160401b031691909201819052600160c01b02176001555b565b615777806200029f6000396000f3fe6080604052600436106101635760003560e01c80638c3152e9116100c0578063b69ef8a811610074578063cff0ab9611610059578063cff0ab9614610444578063e965084c146104e5578063e9e05c421461057157600080fd5b8063b69ef8a814610401578063c0c53b8b1461042457600080fd5b80639bf62d82116100a55780639bf62d821461036b578063a14238e714610398578063a35d99df146103c857600080fd5b80638c3152e91461031e5780639b5f694a1461033e57600080fd5b806354fd4d50116101175780636dbffb78116100fc5780636dbffb78146102de57806371cfaa3f146102fe5780638b4c40b01461018857600080fd5b806354fd4d501461026d5780635c975abb146102b957600080fd5b806335e80ab31161014857806335e80ab314610206578063452a9320146102385780634870496f1461024d57600080fd5b8063149f2f221461018f57806333d7e2bd146101af57600080fd5b3661018a576101883334620186a060006040518060200160405280600081525061057f565b005b600080fd5b34801561019b57600080fd5b506101886101aa366004614b97565b610624565b3480156101bb57600080fd5b506037546101dc9073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b34801561021257600080fd5b506035546101dc90610100900473ffffffffffffffffffffffffffffffffffffffff1681565b34801561024457600080fd5b506101dc610865565b34801561025957600080fd5b50610188610268366004614ccb565b6108fd565b34801561027957600080fd5b50604080518082018252600c81527f322e382e312d626574612e310000000000000000000000000000000000000000602082015290516101fd9190614e1d565b3480156102c557600080fd5b506102ce610eaa565b60405190151581526020016101fd565b3480156102ea57600080fd5b506102ce6102f9366004614e30565b610f3d565b34801561030a57600080fd5b50610188610319366004614e58565b610ff8565b34801561032a57600080fd5b50610188610339366004614e9e565b6111ba565b34801561034a57600080fd5b506036546101dc9073ffffffffffffffffffffffffffffffffffffffff1681565b34801561037757600080fd5b506032546101dc9073ffffffffffffffffffffffffffffffffffffffff1681565b3480156103a457600080fd5b506102ce6103b3366004614e30565b60336020526000908152604090205460ff1681565b3480156103d457600080fd5b506103e86103e3366004614edb565b611c3c565b60405167ffffffffffffffff90911681526020016101fd565b34801561040d57600080fd5b50610416611c55565b6040519081526020016101fd565b34801561043057600080fd5b5061018861043f366004614ef6565b611caf565b34801561045057600080fd5b506001546104ac906fffffffffffffffffffffffffffffffff81169067ffffffffffffffff7001000000000000000000000000000000008204811691780100000000000000000000000000000000000000000000000090041683565b604080516fffffffffffffffffffffffffffffffff909416845267ffffffffffffffff92831660208501529116908201526060016101fd565b3480156104f157600080fd5b50610543610500366004614e30565b603460205260009081526040902080546001909101546fffffffffffffffffffffffffffffffff8082169170010000000000000000000000000000000090041683565b604080519384526fffffffffffffffffffffffffffffffff92831660208501529116908201526060016101fd565b61018861057f366004614f41565b8260005a9050600061058f611f19565b50905073ffffffffffffffffffffffffffffffffffffffff811673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee148015906105cb57503415155b15610602576040517ff2365b5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610610883489898989611fb6565b5061061b8282612162565b50505050505050565b8260005a90506000610634611f19565b5090507fffffffffffffffffffffffff111111111111111111111111111111111111111273ffffffffffffffffffffffffffffffffffffffff8216016106a6576040517f0eaf3c0f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b87603d60008282546106b89190614fed565b90915550506040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260009073ffffffffffffffffffffffffffffffffffffffff8316906370a0823190602401602060405180830381865afa15801561072a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061074e9190615005565b905061077273ffffffffffffffffffffffffffffffffffffffff831633308c61242f565b61077c8982614fed565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff8416906370a0823190602401602060405180830381865afa1580156107e6573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061080a9190615005565b14610841576040517f90b8ec1800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61084f8a8a8a8a8a8a611fb6565b505061085b8282612162565b5050505050505050565b6000603560019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663452a93206040518163ffffffff1660e01b8152600401602060405180830381865afa1580156108d4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f8919061501e565b905090565b610905610eaa565b1561093c576040517ff480973e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b3073ffffffffffffffffffffffffffffffffffffffff16856040015173ffffffffffffffffffffffffffffffffffffffff16036109a5576040517f13496fda00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6036546040517fa25ae5570000000000000000000000000000000000000000000000000000000081526004810186905260009173ffffffffffffffffffffffffffffffffffffffff169063a25ae55790602401606060405180830381865afa158015610a15573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a39919061505b565b519050610a53610a4e368690038601866150c0565b61250b565b8114610ae6576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602960248201527f4f7074696d69736d506f7274616c3a20696e76616c6964206f7574707574207260448201527f6f6f742070726f6f66000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b6000610af187612567565b6000818152603460209081526040918290208251606081018452815481526001909101546fffffffffffffffffffffffffffffffff8082169383018490527001000000000000000000000000000000009091041692810192909252919250901580610c075750805160365460408084015190517fa25ae5570000000000000000000000000000000000000000000000000000000081526fffffffffffffffffffffffffffffffff909116600482015273ffffffffffffffffffffffffffffffffffffffff9091169063a25ae55790602401606060405180830381865afa158015610bdf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c03919061505b565b5114155b610c93576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f4f7074696d69736d506f7274616c3a207769746864726177616c20686173682060448201527f68617320616c7265616479206265656e2070726f76656e0000000000000000006064820152608401610add565b60408051602081018490526000918101829052606001604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081840301815282825280516020918201209083018190529250610d5c9101604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152828201909152600182527f0100000000000000000000000000000000000000000000000000000000000000602083015290610d52888a615126565b8a60400135612597565b610de8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603260248201527f4f7074696d69736d506f7274616c3a20696e76616c696420776974686472617760448201527f616c20696e636c7573696f6e2070726f6f6600000000000000000000000000006064820152608401610add565b604080516060810182528581526fffffffffffffffffffffffffffffffff42811660208084019182528c831684860190815260008981526034835286812095518655925190518416700100000000000000000000000000000000029316929092176001909301929092558b830151908c0151925173ffffffffffffffffffffffffffffffffffffffff918216939091169186917f67a6208cfcc0801d50f6cbe764733f4fddf66ac0b04442061a8a8c0cb6b63f629190a4505050505050505050565b6000603560019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16635c975abb6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610f19573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f891906151aa565b6036546040517fa25ae55700000000000000000000000000000000000000000000000000000000815260048101839052600091610ff29173ffffffffffffffffffffffffffffffffffffffff9091169063a25ae55790602401606060405180830381865afa158015610fb3573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610fd7919061505b565b602001516fffffffffffffffffffffffffffffffff166125bb565b92915050565b60375473ffffffffffffffffffffffffffffffffffffffff163314611049576040517f82b4290000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61105562030d40612661565b60405173ffffffffffffffffffffffffffffffffffffffff8516602482015260ff8416604482015260648101839052608481018290526000907342000000000000000000000000000000000000159073deaddeaddeaddeaddeaddeaddeaddeaddead0001907fb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32908490819062030d4090829060a401604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152918152602080830180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f71cfaa3f000000000000000000000000000000000000000000000000000000001790529051611172969594939291016151c7565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152908290526111aa91614e1d565b60405180910390a450505050565b565b6111c2610eaa565b156111f9576040517ff480973e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60325473ffffffffffffffffffffffffffffffffffffffff1661dead1461124c576040517f9396d15600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600061125782612567565b60008181526034602090815260408083208151606081018352815481526001909101546fffffffffffffffffffffffffffffffff80821694830185905270010000000000000000000000000000000090910416918101919091529293509003611342576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603260248201527f4f7074696d69736d506f7274616c3a207769746864726177616c20686173206e60448201527f6f74206265656e2070726f76656e2079657400000000000000000000000000006064820152608401610add565b603660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663887862726040518163ffffffff1660e01b8152600401602060405180830381865afa1580156113af573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113d39190615005565b81602001516fffffffffffffffffffffffffffffffff16101561149e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604b60248201527f4f7074696d69736d506f7274616c3a207769746864726177616c2074696d657360448201527f74616d70206c657373207468616e204c32204f7261636c65207374617274696e60648201527f672074696d657374616d70000000000000000000000000000000000000000000608482015260a401610add565b6114bd81602001516fffffffffffffffffffffffffffffffff166125bb565b61156f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604560248201527f4f7074696d69736d506f7274616c3a2070726f76656e2077697468647261776160448201527f6c2066696e616c697a6174696f6e20706572696f6420686173206e6f7420656c60648201527f6170736564000000000000000000000000000000000000000000000000000000608482015260a401610add565b60365460408281015190517fa25ae5570000000000000000000000000000000000000000000000000000000081526fffffffffffffffffffffffffffffffff909116600482015260009173ffffffffffffffffffffffffffffffffffffffff169063a25ae55790602401606060405180830381865afa1580156115f6573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061161a919061505b565b82518151919250146116d4576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604960248201527f4f7074696d69736d506f7274616c3a206f757470757420726f6f742070726f7660448201527f656e206973206e6f74207468652073616d652061732063757272656e74206f7560648201527f7470757420726f6f740000000000000000000000000000000000000000000000608482015260a401610add565b6116f381602001516fffffffffffffffffffffffffffffffff166125bb565b6117a5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604360248201527f4f7074696d69736d506f7274616c3a206f75747075742070726f706f73616c2060448201527f66696e616c697a6174696f6e20706572696f6420686173206e6f7420656c617060648201527f7365640000000000000000000000000000000000000000000000000000000000608482015260a401610add565b60008381526033602052604090205460ff1615611844576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603560248201527f4f7074696d69736d506f7274616c3a207769746864726177616c20686173206160448201527f6c7265616479206265656e2066696e616c697a656400000000000000000000006064820152608401610add565b6000838152603360209081526040822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558501516032805473ffffffffffffffffffffffffffffffffffffffff9092167fffffffffffffffffffffffff0000000000000000000000000000000000000000909216919091179055806118cf611f19565b5090507fffffffffffffffffffffffff111111111111111111111111111111111111111273ffffffffffffffffffffffffffffffffffffffff8216016119325761192b8660400151876080015188606001518960a001516126c3565b9150611b85565b8073ffffffffffffffffffffffffffffffffffffffff16866040015173ffffffffffffffffffffffffffffffffffffffff160361199b576040517f13496fda00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b606086015115611b5c578560600151603d60008282546119bb919061522c565b90915550506040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260009073ffffffffffffffffffffffffffffffffffffffff8316906370a0823190602401602060405180830381865afa158015611a2d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a519190615005565b9050611a86876040015188606001518473ffffffffffffffffffffffffffffffffffffffff166127219092919063ffffffff16565b6060870151611a95908261522c565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff8416906370a0823190602401602060405180830381865afa158015611aff573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611b239190615005565b14611b5a576040517f90b8ec1800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505b60a08601515115611b805761192b8660400151876080015160008960a001516126c3565b600191505b603280547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead17905560405185907fdb5c7652857aa163daadd670e116628fb42e869d8ac4251ef8971d9e5727df1b90611be790851515815260200190565b60405180910390a281158015611bfd5750326001145b15611c34576040517feeae4ed300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505050505050565b6000611c49826010615243565b610ff290615208615273565b600080611c60611f19565b5090507fffffffffffffffffffffffff111111111111111111111111111111111111111273ffffffffffffffffffffffffffffffffffffffff821601611ca7574791505090565b5050603d5490565b600054610100900460ff1615808015611ccf5750600054600160ff909116105b80611ce95750303b158015611ce9575060005460ff166001145b611d75576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a65640000000000000000000000000000000000006064820152608401610add565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558015611dd357600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b603680547fffffffffffffffffffffffff000000000000000000000000000000000000000090811673ffffffffffffffffffffffffffffffffffffffff8781169190911790925560378054909116858316179055603580547fffffffffffffffffffffff0000000000000000000000000000000000000000ff166101008584160217905560325416611e8c57603280547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead1790555b611e9461277c565b8015611ef757600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50505050565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b603754604080517f4397dfef0000000000000000000000000000000000000000000000000000000081528151600093849373ffffffffffffffffffffffffffffffffffffffff90911692634397dfef92600480830193928290030181865afa158015611f89573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611fad919061529f565b90939092509050565b818015611fd8575073ffffffffffffffffffffffffffffffffffffffff861615155b1561200f576040517f13496fda00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6120198151611c3c565b67ffffffffffffffff168367ffffffffffffffff161015612066576040517f4929b80800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6201d4c0815111156120a4576040517f73052b0f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b333281146120c5575033731111000000000000000000000000000000001111015b600086868686866040516020016120e09594939291906151c7565b604051602081830303815290604052905060008873ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32846040516121509190614e1d565b60405180910390a45050505050505050565b600154600090612198907801000000000000000000000000000000000000000000000000900467ffffffffffffffff164361522c565b905060006121a461288f565b90506000816020015160ff16826000015163ffffffff166121c59190615308565b905082156122fc576001546000906121fc908390700100000000000000000000000000000000900467ffffffffffffffff16615370565b90506000836040015160ff168361221391906153e4565b6001546122339084906fffffffffffffffffffffffffffffffff166153e4565b61223d9190615308565b60015490915060009061228e906122679084906fffffffffffffffffffffffffffffffff166154a0565b866060015163ffffffff168760a001516fffffffffffffffffffffffffffffffff16612950565b905060018611156122bd576122ba61226782876040015160ff1660018a6122b5919061522c565b61296f565b90505b6fffffffffffffffffffffffffffffffff16780100000000000000000000000000000000000000000000000067ffffffffffffffff4316021760015550505b6001805486919060109061232f908490700100000000000000000000000000000000900467ffffffffffffffff16615273565b92506101000a81548167ffffffffffffffff021916908367ffffffffffffffff160217905550816000015163ffffffff16600160000160109054906101000a900467ffffffffffffffff1667ffffffffffffffff1613156123bc576040517f77ebef4d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001546000906123e8906fffffffffffffffffffffffffffffffff1667ffffffffffffffff8816615514565b905060006123fa48633b9aca006129c4565b6124049083615551565b905060005a612413908861522c565b90508082111561085b5761085b61242a828461522c565b6129db565b60405173ffffffffffffffffffffffffffffffffffffffff80851660248301528316604482015260648101829052611ef79085907f23b872dd00000000000000000000000000000000000000000000000000000000906084015b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152612a04565b6000816000015182602001518360400151846060015160405160200161254a949392919093845260208401929092526040830152606082015260800190565b604051602081830303815290604052805190602001209050919050565b80516020808301516040808501516060860151608087015160a0880151935160009761254a979096959101615565565b6000806125a386612b10565b90506125b181868686612b42565b9695505050505050565b603654604080517ff4daa291000000000000000000000000000000000000000000000000000000008152905160009273ffffffffffffffffffffffffffffffffffffffff169163f4daa2919160048083019260209291908290030181865afa15801561262b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061264f9190615005565b6126599083614fed565b421192915050565b6001805463ffffffff8316919060109061269a908490700100000000000000000000000000000000900467ffffffffffffffff16615273565b92506101000a81548167ffffffffffffffff021916908367ffffffffffffffff16021790555050565b60008060006126d3866000612b72565b905080612709576308c379a06000526020805278185361666543616c6c3a204e6f7420656e6f756768206761736058526064601cfd5b600080855160208701888b5af1979650505050505050565b60405173ffffffffffffffffffffffffffffffffffffffff83166024820152604481018290526127779084907fa9059cbb0000000000000000000000000000000000000000000000000000000090606401612489565b505050565b600054610100900460ff16612813576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e670000000000000000000000000000000000000000006064820152608401610add565b6001547801000000000000000000000000000000000000000000000000900467ffffffffffffffff166000036111b85760408051606081018252633b9aca00808252600060208301524367ffffffffffffffff169190920181905278010000000000000000000000000000000000000000000000000217600155565b6040805160c08082018352600080835260208301819052828401819052606083018190526080830181905260a083015260375483517fcc731b020000000000000000000000000000000000000000000000000000000081529351929373ffffffffffffffffffffffffffffffffffffffff9091169263cc731b02926004808401939192918290030181865afa15801561292c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f891906155d0565b600061296561295f8585612b90565b83612ba0565b90505b9392505050565b6000670de0b6b3a76400006129b06129878583615308565b61299990670de0b6b3a7640000615370565b6129ab85670de0b6b3a76400006153e4565b612baf565b6129ba90866153e4565b6129659190615308565b6000818310156129d45781612968565b5090919050565b6000805a90505b825a6129ee908361522c565b1015612777576129fd82615673565b91506129e2565b6000612a66826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff16612be09092919063ffffffff16565b8051909150156127775780806020019051810190612a8491906151aa565b612777576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152608401610add565b60608180519060200120604051602001612b2c91815260200190565b6040516020818303038152906040529050919050565b6000612b6984612b53878686612bef565b8051602091820120825192909101919091201490565b95945050505050565b600080603f83619c4001026040850201603f5a021015949350505050565b6000818312156129d45781612968565b60008183126129d45781612968565b6000612968670de0b6b3a764000083612bc78661366d565b612bd191906153e4565b612bdb9190615308565b6138b1565b60606129658484600085613af0565b60606000845111612c5c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601560248201527f4d65726b6c65547269653a20656d707479206b657900000000000000000000006044820152606401610add565b6000612c6784613c86565b90506000612c7486613d72565b9050600084604051602001612c8b91815260200190565b60405160208183030381529060405290506000805b84518110156135e4576000858281518110612cbd57612cbd6156ab565b602002602001015190508451831115612d58576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f4d65726b6c65547269653a206b657920696e646578206578636565647320746f60448201527f74616c206b6579206c656e6774680000000000000000000000000000000000006064820152608401610add565b82600003612e115780518051602091820120604051612da692612d8092910190815260200190565b604051602081830303815290604052858051602091820120825192909101919091201490565b612e0c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f4d65726b6c65547269653a20696e76616c696420726f6f7420686173680000006044820152606401610add565b612f68565b805151602011612ec75780518051602091820120604051612e3b92612d8092910190815260200190565b612e0c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602760248201527f4d65726b6c65547269653a20696e76616c6964206c6172676520696e7465726e60448201527f616c2068617368000000000000000000000000000000000000000000000000006064820152608401610add565b805184516020808701919091208251919092012014612f68576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4d65726b6c65547269653a20696e76616c696420696e7465726e616c206e6f6460448201527f65206861736800000000000000000000000000000000000000000000000000006064820152608401610add565b612f7460106001614fed565b8160200151510361315057845183036130e857612fae8160200151601081518110612fa157612fa16156ab565b6020026020010151613dd5565b96506000875111613041576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603b60248201527f4d65726b6c65547269653a2076616c7565206c656e677468206d75737420626560448201527f2067726561746572207468616e207a65726f20286272616e63682900000000006064820152608401610add565b6001865161304f919061522c565b82146130dd576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603a60248201527f4d65726b6c65547269653a2076616c7565206e6f6465206d757374206265206c60448201527f617374206e6f646520696e2070726f6f6620286272616e6368290000000000006064820152608401610add565b505050505050612968565b60008584815181106130fc576130fc6156ab565b602001015160f81c60f81b60f81c9050600082602001518260ff1681518110613127576131276156ab565b6020026020010151905061313a81613e89565b9550613147600186614fed565b945050506135d1565b60028160200151510361354957600061316882613eae565b905060008160008151811061317f5761317f6156ab565b016020015160f81c905060006131966002836156da565b6131a19060026156fc565b905060006131b2848360ff16613ed2565b905060006131c08a89613ed2565b905060006131ce8383613f08565b905080835114613260576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603a60248201527f4d65726b6c65547269653a20706174682072656d61696e646572206d7573742060448201527f736861726520616c6c206e6962626c65732077697468206b65790000000000006064820152608401610add565b60ff851660021480613275575060ff85166003145b15613464578082511461330a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603d60248201527f4d65726b6c65547269653a206b65792072656d61696e646572206d757374206260448201527f65206964656e746963616c20746f20706174682072656d61696e6465720000006064820152608401610add565b6133248760200151600181518110612fa157612fa16156ab565b9c5060008d51116133b7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603960248201527f4d65726b6c65547269653a2076616c7565206c656e677468206d75737420626560448201527f2067726561746572207468616e207a65726f20286c65616629000000000000006064820152608401610add565b60018c516133c5919061522c565b8814613453576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603860248201527f4d65726b6c65547269653a2076616c7565206e6f6465206d757374206265206c60448201527f617374206e6f646520696e2070726f6f6620286c6561662900000000000000006064820152608401610add565b505050505050505050505050612968565b60ff85161580613477575060ff85166001145b156134b6576134a38760200151600181518110613496576134966156ab565b6020026020010151613e89565b99506134af818a614fed565b985061353e565b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603260248201527f4d65726b6c65547269653a2072656365697665642061206e6f6465207769746860448201527f20616e20756e6b6e6f776e2070726566697800000000000000000000000000006064820152608401610add565b5050505050506135d1565b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602860248201527f4d65726b6c65547269653a20726563656976656420616e20756e70617273656160448201527f626c65206e6f64650000000000000000000000000000000000000000000000006064820152608401610add565b50806135dc81615673565b915050612ca0565b506040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602560248201527f4d65726b6c65547269653a2072616e206f7574206f662070726f6f6620656c6560448201527f6d656e74730000000000000000000000000000000000000000000000000000006064820152608401610add565b60008082136136d8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600960248201527f554e444546494e454400000000000000000000000000000000000000000000006044820152606401610add565b600060606136e584613fbc565b03609f8181039490941b90931c6c465772b2bbbb5f824b15207a3081018102606090811d6d0388eaa27412d5aca026815d636e018202811d6d0df99ac502031bf953eff472fdcc018202811d6d13cdffb29d51d99322bdff5f2211018202811d6d0a0f742023def783a307a986912e018202811d6d01920d8043ca89b5239253284e42018202811d6c0b7a86d7375468fac667a0a527016c29508e458543d8aa4df2abee7883018302821d6d0139601a2efabe717e604cbb4894018302821d6d02247f7a7b6594320649aa03aba1018302821d7fffffffffffffffffffffffffffffffffffffff73c0c716a594e00d54e3c4cbc9018302821d7ffffffffffffffffffffffffffffffffffffffdc7b88c420e53a9890533129f6f01830290911d7fffffffffffffffffffffffffffffffffffffff465fda27eb4d63ded474e5f832019091027ffffffffffffffff5f6af8f7b3396644f18e157960000000000000000000000000105711340daa0d5f769dba1915cef59f0815a5506027d0267a36c0c95b3975ab3ee5b203a7614a3f75373f047d803ae7b6687f2b393909302929092017d57115e47018c7177eebf7cd370a3356a1b7863008a5ae8028c72b88642840160ae1d92915050565b60007ffffffffffffffffffffffffffffffffffffffffffffffffdb731c958f34d94c182136138e257506000919050565b680755bf798b4a1bf1e58212613954576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f4558505f4f564552464c4f5700000000000000000000000000000000000000006044820152606401610add565b6503782dace9d9604e83901b059150600060606bb17217f7d1cf79abc9e3b39884821b056b80000000000000000000000001901d6bb17217f7d1cf79abc9e3b39881029093037fffffffffffffffffffffffffffffffffffffffdbf3ccf1604d263450f02a550481018102606090811d6d0277594991cfc85f6e2461837cd9018202811d7fffffffffffffffffffffffffffffffffffffe5adedaa1cb095af9e4da10e363c018202811d6db1bbb201f443cf962f1a1d3db4a5018202811d7ffffffffffffffffffffffffffffffffffffd38dc772608b0ae56cce01296c0eb018202811d6e05180bb14799ab47a8a8cb2a527d57016d02d16720577bd19bf614176fe9ea6c10fe68e7fd37d0007b713f765084018402831d9081019084017ffffffffffffffffffffffffffffffffffffffe2c69812cf03b0763fd454a8f7e010290911d6e0587f503bb6ea29d25fcb7401964500190910279d835ebba824c98fb31b83b2ca45c000000000000000000000000010574029d9dc38563c32e5c2f6dc192ee70ef65f9978af30260c3939093039290921c92915050565b606082471015613b82576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c00000000000000000000000000000000000000000000000000006064820152608401610add565b73ffffffffffffffffffffffffffffffffffffffff85163b613c00576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610add565b6000808673ffffffffffffffffffffffffffffffffffffffff168587604051613c29919061571f565b60006040518083038185875af1925050503d8060008114613c66576040519150601f19603f3d011682016040523d82523d6000602084013e613c6b565b606091505b5091509150613c7b828286614092565b979650505050505050565b80516060908067ffffffffffffffff811115613ca457613ca4614a8b565b604051908082528060200260200182016040528015613ce957816020015b6040805180820190915260608082526020820152815260200190600190039081613cc25790505b50915060005b81811015613d6b576040518060400160405280858381518110613d1457613d146156ab565b60200260200101518152602001613d43868481518110613d3657613d366156ab565b60200260200101516140e5565b815250838281518110613d5857613d586156ab565b6020908102919091010152600101613cef565b5050919050565b606080604051905082518060011b603f8101601f1916830160405280835250602084016020830160005b83811015613dca578060011b82018184015160001a8060041c8253600f811660018301535050600101613d9c565b509295945050505050565b60606000806000613de5856140f8565b919450925090506000816001811115613e0057613e0061573b565b14613e37576040517f1ff9b2e400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b613e418284614fed565b855114613e7a576040517f5c5537b800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b612b6985602001518484614596565b60606020826000015110613ea557613ea082613dd5565b610ff2565b610ff28261462a565b6060610ff2613ecd8360200151600081518110612fa157612fa16156ab565b613d72565b606082518210613ef15750604080516020810190915260008152610ff2565b6129688383848651613f03919061522c565b614640565b6000808251845110613f1b578251613f1e565b83515b90505b8082108015613fa55750828281518110613f3d57613f3d6156ab565b602001015160f81c60f81b7effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916848381518110613f7c57613f7c6156ab565b01602001517fff0000000000000000000000000000000000000000000000000000000000000016145b15613fb557816001019150613f21565b5092915050565b6000808211614027576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600960248201527f554e444546494e454400000000000000000000000000000000000000000000006044820152606401610add565b5060016fffffffffffffffffffffffffffffffff821160071b82811c67ffffffffffffffff1060061b1782811c63ffffffff1060051b1782811c61ffff1060041b1782811c60ff10600390811b90911783811c600f1060021b1783811c909110821b1791821c111790565b606083156140a1575081612968565b8251156140b15782518084602001fd5b816040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610add9190614e1d565b6060610ff26140f383614818565b614885565b6000806000836000015160000361413b576040517f5ab458fb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6020840151805160001a607f811161416057600060016000945094509450505061458f565b60b7811161427657600061417560808361522c565b9050808760000151116141b4576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001838101517fff0000000000000000000000000000000000000000000000000000000000000016908214801561422c57507f80000000000000000000000000000000000000000000000000000000000000007fff000000000000000000000000000000000000000000000000000000000000008216105b15614263576040517fbabb01dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b506001955093506000925061458f915050565b60bf81116143d457600061428b60b78361522c565b9050808760000151116142ca576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60018301517fff0000000000000000000000000000000000000000000000000000000000000016600081900361432c576040517fbabb01dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600184015160088302610100031c60378111614374576040517fbabb01dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61437e8184614fed565b8951116143b7576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6143c2836001614fed565b975095506000945061458f9350505050565b60f781116144395760006143e960c08361522c565b905080876000015111614428576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60019550935084925061458f915050565b600061444660f78361522c565b905080876000015111614485576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60018301517fff000000000000000000000000000000000000000000000000000000000000001660008190036144e7576040517fbabb01dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600184015160088302610100031c6037811161452f576040517fbabb01dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6145398184614fed565b895111614572576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61457d836001614fed565b975095506001945061458f9350505050565b9193909250565b60608167ffffffffffffffff8111156145b1576145b1614a8b565b6040519080825280601f01601f1916602001820160405280156145db576020820181803683370190505b50905081156129685760006145f08486614fed565b90506020820160005b848110156146115782810151828201526020016145f9565b84811115614620576000858301525b5050509392505050565b6060610ff2826020015160008460000151614596565b60608182601f0110156146af576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600e60248201527f736c6963655f6f766572666c6f770000000000000000000000000000000000006044820152606401610add565b82828401101561471b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600e60248201527f736c6963655f6f766572666c6f770000000000000000000000000000000000006044820152606401610add565b81830184511015614788576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601160248201527f736c6963655f6f75744f66426f756e64730000000000000000000000000000006044820152606401610add565b6060821580156147a7576040519150600082526020820160405261480f565b6040519150601f8416801560200281840101858101878315602002848b0101015b818310156147e05780518352602092830192016147c8565b5050858452601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016604052505b50949350505050565b60408051808201909152600080825260208201528151600003614867576040517f5ab458fb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b50604080518082019091528151815260209182019181019190915290565b60606000806000614895856140f8565b9194509250905060018160018111156148b0576148b061573b565b146148e7576040517f4b9c6abe00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b84516148f38385614fed565b1461492a576040517f5c5537b800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b604080516020808252610420820190925290816020015b60408051808201909152600080825260208201528152602001906001900390816149415790505093506000835b8651811015614a2f576000806149b46040518060400160405280858c60000151614998919061522c565b8152602001858c602001516149ad9190614fed565b90526140f8565b5091509150604051806040016040528083836149d09190614fed565b8152602001848b602001516149e59190614fed565b8152508885815181106149fa576149fa6156ab565b6020908102919091010152614a10600185614fed565b9350614a1c8183614fed565b614a269084614fed565b9250505061496e565b50845250919392505050565b73ffffffffffffffffffffffffffffffffffffffff81168114614a5d57600080fd5b50565b803567ffffffffffffffff81168114614a7857600080fd5b919050565b8015158114614a5d57600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715614b0157614b01614a8b565b604052919050565b600082601f830112614b1a57600080fd5b813567ffffffffffffffff811115614b3457614b34614a8b565b614b6560207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601614aba565b818152846020838601011115614b7a57600080fd5b816020850160208301376000918101602001919091529392505050565b60008060008060008060c08789031215614bb057600080fd5b8635614bbb81614a3b565b95506020870135945060408701359350614bd760608801614a60565b92506080870135614be781614a7d565b915060a087013567ffffffffffffffff811115614c0357600080fd5b614c0f89828a01614b09565b9150509295509295509295565b600060c08284031215614c2e57600080fd5b60405160c0810167ffffffffffffffff8282108183111715614c5257614c52614a8b565b816040528293508435835260208501359150614c6d82614a3b565b81602084015260408501359150614c8382614a3b565b816040840152606085013560608401526080850135608084015260a0850135915080821115614cb157600080fd5b50614cbe85828601614b09565b60a0830152505092915050565b600080600080600085870360e0811215614ce457600080fd5b863567ffffffffffffffff80821115614cfc57600080fd5b614d088a838b01614c1c565b97506020890135965060807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc084011215614d4157600080fd5b60408901955060c0890135925080831115614d5b57600080fd5b828901925089601f840112614d6f57600080fd5b8235915080821115614d8057600080fd5b508860208260051b8401011115614d9657600080fd5b959894975092955050506020019190565b60005b83811015614dc2578181015183820152602001614daa565b83811115611ef75750506000910152565b60008151808452614deb816020860160208601614da7565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b6020815260006129686020830184614dd3565b600060208284031215614e4257600080fd5b5035919050565b60ff81168114614a5d57600080fd5b60008060008060808587031215614e6e57600080fd5b8435614e7981614a3b565b93506020850135614e8981614e49565b93969395505050506040820135916060013590565b600060208284031215614eb057600080fd5b813567ffffffffffffffff811115614ec757600080fd5b614ed384828501614c1c565b949350505050565b600060208284031215614eed57600080fd5b61296882614a60565b600080600060608486031215614f0b57600080fd5b8335614f1681614a3b565b92506020840135614f2681614a3b565b91506040840135614f3681614a3b565b809150509250925092565b600080600080600060a08688031215614f5957600080fd5b8535614f6481614a3b565b945060208601359350614f7960408701614a60565b92506060860135614f8981614a7d565b9150608086013567ffffffffffffffff811115614fa557600080fd5b614fb188828901614b09565b9150509295509295909350565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000821982111561500057615000614fbe565b500190565b60006020828403121561501757600080fd5b5051919050565b60006020828403121561503057600080fd5b815161296881614a3b565b80516fffffffffffffffffffffffffffffffff81168114614a7857600080fd5b60006060828403121561506d57600080fd5b6040516060810181811067ffffffffffffffff8211171561509057615090614a8b565b604052825181526150a36020840161503b565b60208201526150b46040840161503b565b60408201529392505050565b6000608082840312156150d257600080fd5b6040516080810181811067ffffffffffffffff821117156150f5576150f5614a8b565b8060405250823581526020830135602082015260408301356040820152606083013560608201528091505092915050565b600067ffffffffffffffff8084111561514157615141614a8b565b8360051b6020615152818301614aba565b86815291850191818101903684111561516a57600080fd5b865b8481101561519e578035868111156151845760008081fd5b61519036828b01614b09565b84525091830191830161516c565b50979650505050505050565b6000602082840312156151bc57600080fd5b815161296881614a7d565b8581528460208201527fffffffffffffffff0000000000000000000000000000000000000000000000008460c01b16604082015282151560f81b60488201526000825161521b816049850160208701614da7565b919091016049019695505050505050565b60008282101561523e5761523e614fbe565b500390565b600067ffffffffffffffff8083168185168183048111821515161561526a5761526a614fbe565b02949350505050565b600067ffffffffffffffff80831681851680830382111561529657615296614fbe565b01949350505050565b600080604083850312156152b257600080fd5b82516152bd81614a3b565b60208401519092506152ce81614e49565b809150509250929050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082615317576153176152d9565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff83147f80000000000000000000000000000000000000000000000000000000000000008314161561536b5761536b614fbe565b500590565b6000808312837f8000000000000000000000000000000000000000000000000000000000000000018312811516156153aa576153aa614fbe565b837f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0183138116156153de576153de614fbe565b50500390565b60007f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60008413600084138583048511828216161561542557615425614fbe565b7f8000000000000000000000000000000000000000000000000000000000000000600087128682058812818416161561546057615460614fbe565b6000871292508782058712848416161561547c5761547c614fbe565b8785058712818416161561549257615492614fbe565b505050929093029392505050565b6000808212827f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff038413811516156154da576154da614fbe565b827f800000000000000000000000000000000000000000000000000000000000000003841281161561550e5761550e614fbe565b50500190565b6000817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048311821515161561554c5761554c614fbe565b500290565b600082615560576155606152d9565b500490565b868152600073ffffffffffffffffffffffffffffffffffffffff808816602084015280871660408401525084606083015283608083015260c060a08301526155b060c0830184614dd3565b98975050505050505050565b805163ffffffff81168114614a7857600080fd5b600060c082840312156155e257600080fd5b60405160c0810181811067ffffffffffffffff8211171561560557615605614a8b565b604052615611836155bc565b8152602083015161562181614e49565b6020820152604083015161563481614e49565b6040820152615645606084016155bc565b6060820152615656608084016155bc565b608082015261566760a0840161503b565b60a08201529392505050565b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82036156a4576156a4614fbe565b5060010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b600060ff8316806156ed576156ed6152d9565b8060ff84160691505092915050565b600060ff821660ff84168082101561571657615716614fbe565b90039392505050565b60008251615731818460208701614da7565b9190910192915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fdfea164736f6c634300080f000a
Deployed ByteCode
0x6080604052600436106101635760003560e01c80638c3152e9116100c0578063b69ef8a811610074578063cff0ab9611610059578063cff0ab9614610444578063e965084c146104e5578063e9e05c421461057157600080fd5b8063b69ef8a814610401578063c0c53b8b1461042457600080fd5b80639bf62d82116100a55780639bf62d821461036b578063a14238e714610398578063a35d99df146103c857600080fd5b80638c3152e91461031e5780639b5f694a1461033e57600080fd5b806354fd4d50116101175780636dbffb78116100fc5780636dbffb78146102de57806371cfaa3f146102fe5780638b4c40b01461018857600080fd5b806354fd4d501461026d5780635c975abb146102b957600080fd5b806335e80ab31161014857806335e80ab314610206578063452a9320146102385780634870496f1461024d57600080fd5b8063149f2f221461018f57806333d7e2bd146101af57600080fd5b3661018a576101883334620186a060006040518060200160405280600081525061057f565b005b600080fd5b34801561019b57600080fd5b506101886101aa366004614b97565b610624565b3480156101bb57600080fd5b506037546101dc9073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b34801561021257600080fd5b506035546101dc90610100900473ffffffffffffffffffffffffffffffffffffffff1681565b34801561024457600080fd5b506101dc610865565b34801561025957600080fd5b50610188610268366004614ccb565b6108fd565b34801561027957600080fd5b50604080518082018252600c81527f322e382e312d626574612e310000000000000000000000000000000000000000602082015290516101fd9190614e1d565b3480156102c557600080fd5b506102ce610eaa565b60405190151581526020016101fd565b3480156102ea57600080fd5b506102ce6102f9366004614e30565b610f3d565b34801561030a57600080fd5b50610188610319366004614e58565b610ff8565b34801561032a57600080fd5b50610188610339366004614e9e565b6111ba565b34801561034a57600080fd5b506036546101dc9073ffffffffffffffffffffffffffffffffffffffff1681565b34801561037757600080fd5b506032546101dc9073ffffffffffffffffffffffffffffffffffffffff1681565b3480156103a457600080fd5b506102ce6103b3366004614e30565b60336020526000908152604090205460ff1681565b3480156103d457600080fd5b506103e86103e3366004614edb565b611c3c565b60405167ffffffffffffffff90911681526020016101fd565b34801561040d57600080fd5b50610416611c55565b6040519081526020016101fd565b34801561043057600080fd5b5061018861043f366004614ef6565b611caf565b34801561045057600080fd5b506001546104ac906fffffffffffffffffffffffffffffffff81169067ffffffffffffffff7001000000000000000000000000000000008204811691780100000000000000000000000000000000000000000000000090041683565b604080516fffffffffffffffffffffffffffffffff909416845267ffffffffffffffff92831660208501529116908201526060016101fd565b3480156104f157600080fd5b50610543610500366004614e30565b603460205260009081526040902080546001909101546fffffffffffffffffffffffffffffffff8082169170010000000000000000000000000000000090041683565b604080519384526fffffffffffffffffffffffffffffffff92831660208501529116908201526060016101fd565b61018861057f366004614f41565b8260005a9050600061058f611f19565b50905073ffffffffffffffffffffffffffffffffffffffff811673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee148015906105cb57503415155b15610602576040517ff2365b5b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610610883489898989611fb6565b5061061b8282612162565b50505050505050565b8260005a90506000610634611f19565b5090507fffffffffffffffffffffffff111111111111111111111111111111111111111273ffffffffffffffffffffffffffffffffffffffff8216016106a6576040517f0eaf3c0f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b87603d60008282546106b89190614fed565b90915550506040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260009073ffffffffffffffffffffffffffffffffffffffff8316906370a0823190602401602060405180830381865afa15801561072a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061074e9190615005565b905061077273ffffffffffffffffffffffffffffffffffffffff831633308c61242f565b61077c8982614fed565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff8416906370a0823190602401602060405180830381865afa1580156107e6573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061080a9190615005565b14610841576040517f90b8ec1800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61084f8a8a8a8a8a8a611fb6565b505061085b8282612162565b5050505050505050565b6000603560019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663452a93206040518163ffffffff1660e01b8152600401602060405180830381865afa1580156108d4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f8919061501e565b905090565b610905610eaa565b1561093c576040517ff480973e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b3073ffffffffffffffffffffffffffffffffffffffff16856040015173ffffffffffffffffffffffffffffffffffffffff16036109a5576040517f13496fda00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6036546040517fa25ae5570000000000000000000000000000000000000000000000000000000081526004810186905260009173ffffffffffffffffffffffffffffffffffffffff169063a25ae55790602401606060405180830381865afa158015610a15573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a39919061505b565b519050610a53610a4e368690038601866150c0565b61250b565b8114610ae6576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602960248201527f4f7074696d69736d506f7274616c3a20696e76616c6964206f7574707574207260448201527f6f6f742070726f6f66000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b6000610af187612567565b6000818152603460209081526040918290208251606081018452815481526001909101546fffffffffffffffffffffffffffffffff8082169383018490527001000000000000000000000000000000009091041692810192909252919250901580610c075750805160365460408084015190517fa25ae5570000000000000000000000000000000000000000000000000000000081526fffffffffffffffffffffffffffffffff909116600482015273ffffffffffffffffffffffffffffffffffffffff9091169063a25ae55790602401606060405180830381865afa158015610bdf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c03919061505b565b5114155b610c93576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f4f7074696d69736d506f7274616c3a207769746864726177616c20686173682060448201527f68617320616c7265616479206265656e2070726f76656e0000000000000000006064820152608401610add565b60408051602081018490526000918101829052606001604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081840301815282825280516020918201209083018190529250610d5c9101604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152828201909152600182527f0100000000000000000000000000000000000000000000000000000000000000602083015290610d52888a615126565b8a60400135612597565b610de8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603260248201527f4f7074696d69736d506f7274616c3a20696e76616c696420776974686472617760448201527f616c20696e636c7573696f6e2070726f6f6600000000000000000000000000006064820152608401610add565b604080516060810182528581526fffffffffffffffffffffffffffffffff42811660208084019182528c831684860190815260008981526034835286812095518655925190518416700100000000000000000000000000000000029316929092176001909301929092558b830151908c0151925173ffffffffffffffffffffffffffffffffffffffff918216939091169186917f67a6208cfcc0801d50f6cbe764733f4fddf66ac0b04442061a8a8c0cb6b63f629190a4505050505050505050565b6000603560019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16635c975abb6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610f19573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f891906151aa565b6036546040517fa25ae55700000000000000000000000000000000000000000000000000000000815260048101839052600091610ff29173ffffffffffffffffffffffffffffffffffffffff9091169063a25ae55790602401606060405180830381865afa158015610fb3573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610fd7919061505b565b602001516fffffffffffffffffffffffffffffffff166125bb565b92915050565b60375473ffffffffffffffffffffffffffffffffffffffff163314611049576040517f82b4290000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61105562030d40612661565b60405173ffffffffffffffffffffffffffffffffffffffff8516602482015260ff8416604482015260648101839052608481018290526000907342000000000000000000000000000000000000159073deaddeaddeaddeaddeaddeaddeaddeaddead0001907fb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32908490819062030d4090829060a401604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152918152602080830180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f71cfaa3f000000000000000000000000000000000000000000000000000000001790529051611172969594939291016151c7565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152908290526111aa91614e1d565b60405180910390a450505050565b565b6111c2610eaa565b156111f9576040517ff480973e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60325473ffffffffffffffffffffffffffffffffffffffff1661dead1461124c576040517f9396d15600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600061125782612567565b60008181526034602090815260408083208151606081018352815481526001909101546fffffffffffffffffffffffffffffffff80821694830185905270010000000000000000000000000000000090910416918101919091529293509003611342576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603260248201527f4f7074696d69736d506f7274616c3a207769746864726177616c20686173206e60448201527f6f74206265656e2070726f76656e2079657400000000000000000000000000006064820152608401610add565b603660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663887862726040518163ffffffff1660e01b8152600401602060405180830381865afa1580156113af573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113d39190615005565b81602001516fffffffffffffffffffffffffffffffff16101561149e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604b60248201527f4f7074696d69736d506f7274616c3a207769746864726177616c2074696d657360448201527f74616d70206c657373207468616e204c32204f7261636c65207374617274696e60648201527f672074696d657374616d70000000000000000000000000000000000000000000608482015260a401610add565b6114bd81602001516fffffffffffffffffffffffffffffffff166125bb565b61156f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604560248201527f4f7074696d69736d506f7274616c3a2070726f76656e2077697468647261776160448201527f6c2066696e616c697a6174696f6e20706572696f6420686173206e6f7420656c60648201527f6170736564000000000000000000000000000000000000000000000000000000608482015260a401610add565b60365460408281015190517fa25ae5570000000000000000000000000000000000000000000000000000000081526fffffffffffffffffffffffffffffffff909116600482015260009173ffffffffffffffffffffffffffffffffffffffff169063a25ae55790602401606060405180830381865afa1580156115f6573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061161a919061505b565b82518151919250146116d4576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604960248201527f4f7074696d69736d506f7274616c3a206f757470757420726f6f742070726f7660448201527f656e206973206e6f74207468652073616d652061732063757272656e74206f7560648201527f7470757420726f6f740000000000000000000000000000000000000000000000608482015260a401610add565b6116f381602001516fffffffffffffffffffffffffffffffff166125bb565b6117a5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604360248201527f4f7074696d69736d506f7274616c3a206f75747075742070726f706f73616c2060448201527f66696e616c697a6174696f6e20706572696f6420686173206e6f7420656c617060648201527f7365640000000000000000000000000000000000000000000000000000000000608482015260a401610add565b60008381526033602052604090205460ff1615611844576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603560248201527f4f7074696d69736d506f7274616c3a207769746864726177616c20686173206160448201527f6c7265616479206265656e2066696e616c697a656400000000000000000000006064820152608401610add565b6000838152603360209081526040822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558501516032805473ffffffffffffffffffffffffffffffffffffffff9092167fffffffffffffffffffffffff0000000000000000000000000000000000000000909216919091179055806118cf611f19565b5090507fffffffffffffffffffffffff111111111111111111111111111111111111111273ffffffffffffffffffffffffffffffffffffffff8216016119325761192b8660400151876080015188606001518960a001516126c3565b9150611b85565b8073ffffffffffffffffffffffffffffffffffffffff16866040015173ffffffffffffffffffffffffffffffffffffffff160361199b576040517f13496fda00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b606086015115611b5c578560600151603d60008282546119bb919061522c565b90915550506040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260009073ffffffffffffffffffffffffffffffffffffffff8316906370a0823190602401602060405180830381865afa158015611a2d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a519190615005565b9050611a86876040015188606001518473ffffffffffffffffffffffffffffffffffffffff166127219092919063ffffffff16565b6060870151611a95908261522c565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff8416906370a0823190602401602060405180830381865afa158015611aff573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611b239190615005565b14611b5a576040517f90b8ec1800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505b60a08601515115611b805761192b8660400151876080015160008960a001516126c3565b600191505b603280547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead17905560405185907fdb5c7652857aa163daadd670e116628fb42e869d8ac4251ef8971d9e5727df1b90611be790851515815260200190565b60405180910390a281158015611bfd5750326001145b15611c34576040517feeae4ed300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505050505050565b6000611c49826010615243565b610ff290615208615273565b600080611c60611f19565b5090507fffffffffffffffffffffffff111111111111111111111111111111111111111273ffffffffffffffffffffffffffffffffffffffff821601611ca7574791505090565b5050603d5490565b600054610100900460ff1615808015611ccf5750600054600160ff909116105b80611ce95750303b158015611ce9575060005460ff166001145b611d75576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a65640000000000000000000000000000000000006064820152608401610add565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558015611dd357600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b603680547fffffffffffffffffffffffff000000000000000000000000000000000000000090811673ffffffffffffffffffffffffffffffffffffffff8781169190911790925560378054909116858316179055603580547fffffffffffffffffffffff0000000000000000000000000000000000000000ff166101008584160217905560325416611e8c57603280547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead1790555b611e9461277c565b8015611ef757600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50505050565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b603754604080517f4397dfef0000000000000000000000000000000000000000000000000000000081528151600093849373ffffffffffffffffffffffffffffffffffffffff90911692634397dfef92600480830193928290030181865afa158015611f89573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611fad919061529f565b90939092509050565b818015611fd8575073ffffffffffffffffffffffffffffffffffffffff861615155b1561200f576040517f13496fda00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6120198151611c3c565b67ffffffffffffffff168367ffffffffffffffff161015612066576040517f4929b80800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6201d4c0815111156120a4576040517f73052b0f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b333281146120c5575033731111000000000000000000000000000000001111015b600086868686866040516020016120e09594939291906151c7565b604051602081830303815290604052905060008873ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32846040516121509190614e1d565b60405180910390a45050505050505050565b600154600090612198907801000000000000000000000000000000000000000000000000900467ffffffffffffffff164361522c565b905060006121a461288f565b90506000816020015160ff16826000015163ffffffff166121c59190615308565b905082156122fc576001546000906121fc908390700100000000000000000000000000000000900467ffffffffffffffff16615370565b90506000836040015160ff168361221391906153e4565b6001546122339084906fffffffffffffffffffffffffffffffff166153e4565b61223d9190615308565b60015490915060009061228e906122679084906fffffffffffffffffffffffffffffffff166154a0565b866060015163ffffffff168760a001516fffffffffffffffffffffffffffffffff16612950565b905060018611156122bd576122ba61226782876040015160ff1660018a6122b5919061522c565b61296f565b90505b6fffffffffffffffffffffffffffffffff16780100000000000000000000000000000000000000000000000067ffffffffffffffff4316021760015550505b6001805486919060109061232f908490700100000000000000000000000000000000900467ffffffffffffffff16615273565b92506101000a81548167ffffffffffffffff021916908367ffffffffffffffff160217905550816000015163ffffffff16600160000160109054906101000a900467ffffffffffffffff1667ffffffffffffffff1613156123bc576040517f77ebef4d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001546000906123e8906fffffffffffffffffffffffffffffffff1667ffffffffffffffff8816615514565b905060006123fa48633b9aca006129c4565b6124049083615551565b905060005a612413908861522c565b90508082111561085b5761085b61242a828461522c565b6129db565b60405173ffffffffffffffffffffffffffffffffffffffff80851660248301528316604482015260648101829052611ef79085907f23b872dd00000000000000000000000000000000000000000000000000000000906084015b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152612a04565b6000816000015182602001518360400151846060015160405160200161254a949392919093845260208401929092526040830152606082015260800190565b604051602081830303815290604052805190602001209050919050565b80516020808301516040808501516060860151608087015160a0880151935160009761254a979096959101615565565b6000806125a386612b10565b90506125b181868686612b42565b9695505050505050565b603654604080517ff4daa291000000000000000000000000000000000000000000000000000000008152905160009273ffffffffffffffffffffffffffffffffffffffff169163f4daa2919160048083019260209291908290030181865afa15801561262b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061264f9190615005565b6126599083614fed565b421192915050565b6001805463ffffffff8316919060109061269a908490700100000000000000000000000000000000900467ffffffffffffffff16615273565b92506101000a81548167ffffffffffffffff021916908367ffffffffffffffff16021790555050565b60008060006126d3866000612b72565b905080612709576308c379a06000526020805278185361666543616c6c3a204e6f7420656e6f756768206761736058526064601cfd5b600080855160208701888b5af1979650505050505050565b60405173ffffffffffffffffffffffffffffffffffffffff83166024820152604481018290526127779084907fa9059cbb0000000000000000000000000000000000000000000000000000000090606401612489565b505050565b600054610100900460ff16612813576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e670000000000000000000000000000000000000000006064820152608401610add565b6001547801000000000000000000000000000000000000000000000000900467ffffffffffffffff166000036111b85760408051606081018252633b9aca00808252600060208301524367ffffffffffffffff169190920181905278010000000000000000000000000000000000000000000000000217600155565b6040805160c08082018352600080835260208301819052828401819052606083018190526080830181905260a083015260375483517fcc731b020000000000000000000000000000000000000000000000000000000081529351929373ffffffffffffffffffffffffffffffffffffffff9091169263cc731b02926004808401939192918290030181865afa15801561292c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f891906155d0565b600061296561295f8585612b90565b83612ba0565b90505b9392505050565b6000670de0b6b3a76400006129b06129878583615308565b61299990670de0b6b3a7640000615370565b6129ab85670de0b6b3a76400006153e4565b612baf565b6129ba90866153e4565b6129659190615308565b6000818310156129d45781612968565b5090919050565b6000805a90505b825a6129ee908361522c565b1015612777576129fd82615673565b91506129e2565b6000612a66826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff16612be09092919063ffffffff16565b8051909150156127775780806020019051810190612a8491906151aa565b612777576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152608401610add565b60608180519060200120604051602001612b2c91815260200190565b6040516020818303038152906040529050919050565b6000612b6984612b53878686612bef565b8051602091820120825192909101919091201490565b95945050505050565b600080603f83619c4001026040850201603f5a021015949350505050565b6000818312156129d45781612968565b60008183126129d45781612968565b6000612968670de0b6b3a764000083612bc78661366d565b612bd191906153e4565b612bdb9190615308565b6138b1565b60606129658484600085613af0565b60606000845111612c5c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601560248201527f4d65726b6c65547269653a20656d707479206b657900000000000000000000006044820152606401610add565b6000612c6784613c86565b90506000612c7486613d72565b9050600084604051602001612c8b91815260200190565b60405160208183030381529060405290506000805b84518110156135e4576000858281518110612cbd57612cbd6156ab565b602002602001015190508451831115612d58576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f4d65726b6c65547269653a206b657920696e646578206578636565647320746f60448201527f74616c206b6579206c656e6774680000000000000000000000000000000000006064820152608401610add565b82600003612e115780518051602091820120604051612da692612d8092910190815260200190565b604051602081830303815290604052858051602091820120825192909101919091201490565b612e0c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f4d65726b6c65547269653a20696e76616c696420726f6f7420686173680000006044820152606401610add565b612f68565b805151602011612ec75780518051602091820120604051612e3b92612d8092910190815260200190565b612e0c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602760248201527f4d65726b6c65547269653a20696e76616c6964206c6172676520696e7465726e60448201527f616c2068617368000000000000000000000000000000000000000000000000006064820152608401610add565b805184516020808701919091208251919092012014612f68576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4d65726b6c65547269653a20696e76616c696420696e7465726e616c206e6f6460448201527f65206861736800000000000000000000000000000000000000000000000000006064820152608401610add565b612f7460106001614fed565b8160200151510361315057845183036130e857612fae8160200151601081518110612fa157612fa16156ab565b6020026020010151613dd5565b96506000875111613041576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603b60248201527f4d65726b6c65547269653a2076616c7565206c656e677468206d75737420626560448201527f2067726561746572207468616e207a65726f20286272616e63682900000000006064820152608401610add565b6001865161304f919061522c565b82146130dd576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603a60248201527f4d65726b6c65547269653a2076616c7565206e6f6465206d757374206265206c60448201527f617374206e6f646520696e2070726f6f6620286272616e6368290000000000006064820152608401610add565b505050505050612968565b60008584815181106130fc576130fc6156ab565b602001015160f81c60f81b60f81c9050600082602001518260ff1681518110613127576131276156ab565b6020026020010151905061313a81613e89565b9550613147600186614fed565b945050506135d1565b60028160200151510361354957600061316882613eae565b905060008160008151811061317f5761317f6156ab565b016020015160f81c905060006131966002836156da565b6131a19060026156fc565b905060006131b2848360ff16613ed2565b905060006131c08a89613ed2565b905060006131ce8383613f08565b905080835114613260576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603a60248201527f4d65726b6c65547269653a20706174682072656d61696e646572206d7573742060448201527f736861726520616c6c206e6962626c65732077697468206b65790000000000006064820152608401610add565b60ff851660021480613275575060ff85166003145b15613464578082511461330a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603d60248201527f4d65726b6c65547269653a206b65792072656d61696e646572206d757374206260448201527f65206964656e746963616c20746f20706174682072656d61696e6465720000006064820152608401610add565b6133248760200151600181518110612fa157612fa16156ab565b9c5060008d51116133b7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603960248201527f4d65726b6c65547269653a2076616c7565206c656e677468206d75737420626560448201527f2067726561746572207468616e207a65726f20286c65616629000000000000006064820152608401610add565b60018c516133c5919061522c565b8814613453576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603860248201527f4d65726b6c65547269653a2076616c7565206e6f6465206d757374206265206c60448201527f617374206e6f646520696e2070726f6f6620286c6561662900000000000000006064820152608401610add565b505050505050505050505050612968565b60ff85161580613477575060ff85166001145b156134b6576134a38760200151600181518110613496576134966156ab565b6020026020010151613e89565b99506134af818a614fed565b985061353e565b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603260248201527f4d65726b6c65547269653a2072656365697665642061206e6f6465207769746860448201527f20616e20756e6b6e6f776e2070726566697800000000000000000000000000006064820152608401610add565b5050505050506135d1565b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602860248201527f4d65726b6c65547269653a20726563656976656420616e20756e70617273656160448201527f626c65206e6f64650000000000000000000000000000000000000000000000006064820152608401610add565b50806135dc81615673565b915050612ca0565b506040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602560248201527f4d65726b6c65547269653a2072616e206f7574206f662070726f6f6620656c6560448201527f6d656e74730000000000000000000000000000000000000000000000000000006064820152608401610add565b60008082136136d8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600960248201527f554e444546494e454400000000000000000000000000000000000000000000006044820152606401610add565b600060606136e584613fbc565b03609f8181039490941b90931c6c465772b2bbbb5f824b15207a3081018102606090811d6d0388eaa27412d5aca026815d636e018202811d6d0df99ac502031bf953eff472fdcc018202811d6d13cdffb29d51d99322bdff5f2211018202811d6d0a0f742023def783a307a986912e018202811d6d01920d8043ca89b5239253284e42018202811d6c0b7a86d7375468fac667a0a527016c29508e458543d8aa4df2abee7883018302821d6d0139601a2efabe717e604cbb4894018302821d6d02247f7a7b6594320649aa03aba1018302821d7fffffffffffffffffffffffffffffffffffffff73c0c716a594e00d54e3c4cbc9018302821d7ffffffffffffffffffffffffffffffffffffffdc7b88c420e53a9890533129f6f01830290911d7fffffffffffffffffffffffffffffffffffffff465fda27eb4d63ded474e5f832019091027ffffffffffffffff5f6af8f7b3396644f18e157960000000000000000000000000105711340daa0d5f769dba1915cef59f0815a5506027d0267a36c0c95b3975ab3ee5b203a7614a3f75373f047d803ae7b6687f2b393909302929092017d57115e47018c7177eebf7cd370a3356a1b7863008a5ae8028c72b88642840160ae1d92915050565b60007ffffffffffffffffffffffffffffffffffffffffffffffffdb731c958f34d94c182136138e257506000919050565b680755bf798b4a1bf1e58212613954576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f4558505f4f564552464c4f5700000000000000000000000000000000000000006044820152606401610add565b6503782dace9d9604e83901b059150600060606bb17217f7d1cf79abc9e3b39884821b056b80000000000000000000000001901d6bb17217f7d1cf79abc9e3b39881029093037fffffffffffffffffffffffffffffffffffffffdbf3ccf1604d263450f02a550481018102606090811d6d0277594991cfc85f6e2461837cd9018202811d7fffffffffffffffffffffffffffffffffffffe5adedaa1cb095af9e4da10e363c018202811d6db1bbb201f443cf962f1a1d3db4a5018202811d7ffffffffffffffffffffffffffffffffffffd38dc772608b0ae56cce01296c0eb018202811d6e05180bb14799ab47a8a8cb2a527d57016d02d16720577bd19bf614176fe9ea6c10fe68e7fd37d0007b713f765084018402831d9081019084017ffffffffffffffffffffffffffffffffffffffe2c69812cf03b0763fd454a8f7e010290911d6e0587f503bb6ea29d25fcb7401964500190910279d835ebba824c98fb31b83b2ca45c000000000000000000000000010574029d9dc38563c32e5c2f6dc192ee70ef65f9978af30260c3939093039290921c92915050565b606082471015613b82576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c00000000000000000000000000000000000000000000000000006064820152608401610add565b73ffffffffffffffffffffffffffffffffffffffff85163b613c00576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610add565b6000808673ffffffffffffffffffffffffffffffffffffffff168587604051613c29919061571f565b60006040518083038185875af1925050503d8060008114613c66576040519150601f19603f3d011682016040523d82523d6000602084013e613c6b565b606091505b5091509150613c7b828286614092565b979650505050505050565b80516060908067ffffffffffffffff811115613ca457613ca4614a8b565b604051908082528060200260200182016040528015613ce957816020015b6040805180820190915260608082526020820152815260200190600190039081613cc25790505b50915060005b81811015613d6b576040518060400160405280858381518110613d1457613d146156ab565b60200260200101518152602001613d43868481518110613d3657613d366156ab565b60200260200101516140e5565b815250838281518110613d5857613d586156ab565b6020908102919091010152600101613cef565b5050919050565b606080604051905082518060011b603f8101601f1916830160405280835250602084016020830160005b83811015613dca578060011b82018184015160001a8060041c8253600f811660018301535050600101613d9c565b509295945050505050565b60606000806000613de5856140f8565b919450925090506000816001811115613e0057613e0061573b565b14613e37576040517f1ff9b2e400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b613e418284614fed565b855114613e7a576040517f5c5537b800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b612b6985602001518484614596565b60606020826000015110613ea557613ea082613dd5565b610ff2565b610ff28261462a565b6060610ff2613ecd8360200151600081518110612fa157612fa16156ab565b613d72565b606082518210613ef15750604080516020810190915260008152610ff2565b6129688383848651613f03919061522c565b614640565b6000808251845110613f1b578251613f1e565b83515b90505b8082108015613fa55750828281518110613f3d57613f3d6156ab565b602001015160f81c60f81b7effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916848381518110613f7c57613f7c6156ab565b01602001517fff0000000000000000000000000000000000000000000000000000000000000016145b15613fb557816001019150613f21565b5092915050565b6000808211614027576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600960248201527f554e444546494e454400000000000000000000000000000000000000000000006044820152606401610add565b5060016fffffffffffffffffffffffffffffffff821160071b82811c67ffffffffffffffff1060061b1782811c63ffffffff1060051b1782811c61ffff1060041b1782811c60ff10600390811b90911783811c600f1060021b1783811c909110821b1791821c111790565b606083156140a1575081612968565b8251156140b15782518084602001fd5b816040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610add9190614e1d565b6060610ff26140f383614818565b614885565b6000806000836000015160000361413b576040517f5ab458fb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6020840151805160001a607f811161416057600060016000945094509450505061458f565b60b7811161427657600061417560808361522c565b9050808760000151116141b4576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001838101517fff0000000000000000000000000000000000000000000000000000000000000016908214801561422c57507f80000000000000000000000000000000000000000000000000000000000000007fff000000000000000000000000000000000000000000000000000000000000008216105b15614263576040517fbabb01dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b506001955093506000925061458f915050565b60bf81116143d457600061428b60b78361522c565b9050808760000151116142ca576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60018301517fff0000000000000000000000000000000000000000000000000000000000000016600081900361432c576040517fbabb01dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600184015160088302610100031c60378111614374576040517fbabb01dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61437e8184614fed565b8951116143b7576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6143c2836001614fed565b975095506000945061458f9350505050565b60f781116144395760006143e960c08361522c565b905080876000015111614428576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60019550935084925061458f915050565b600061444660f78361522c565b905080876000015111614485576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60018301517fff000000000000000000000000000000000000000000000000000000000000001660008190036144e7576040517fbabb01dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600184015160088302610100031c6037811161452f576040517fbabb01dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6145398184614fed565b895111614572576040517f66c9448500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61457d836001614fed565b975095506001945061458f9350505050565b9193909250565b60608167ffffffffffffffff8111156145b1576145b1614a8b565b6040519080825280601f01601f1916602001820160405280156145db576020820181803683370190505b50905081156129685760006145f08486614fed565b90506020820160005b848110156146115782810151828201526020016145f9565b84811115614620576000858301525b5050509392505050565b6060610ff2826020015160008460000151614596565b60608182601f0110156146af576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600e60248201527f736c6963655f6f766572666c6f770000000000000000000000000000000000006044820152606401610add565b82828401101561471b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600e60248201527f736c6963655f6f766572666c6f770000000000000000000000000000000000006044820152606401610add565b81830184511015614788576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601160248201527f736c6963655f6f75744f66426f756e64730000000000000000000000000000006044820152606401610add565b6060821580156147a7576040519150600082526020820160405261480f565b6040519150601f8416801560200281840101858101878315602002848b0101015b818310156147e05780518352602092830192016147c8565b5050858452601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016604052505b50949350505050565b60408051808201909152600080825260208201528151600003614867576040517f5ab458fb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b50604080518082019091528151815260209182019181019190915290565b60606000806000614895856140f8565b9194509250905060018160018111156148b0576148b061573b565b146148e7576040517f4b9c6abe00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b84516148f38385614fed565b1461492a576040517f5c5537b800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b604080516020808252610420820190925290816020015b60408051808201909152600080825260208201528152602001906001900390816149415790505093506000835b8651811015614a2f576000806149b46040518060400160405280858c60000151614998919061522c565b8152602001858c602001516149ad9190614fed565b90526140f8565b5091509150604051806040016040528083836149d09190614fed565b8152602001848b602001516149e59190614fed565b8152508885815181106149fa576149fa6156ab565b6020908102919091010152614a10600185614fed565b9350614a1c8183614fed565b614a269084614fed565b9250505061496e565b50845250919392505050565b73ffffffffffffffffffffffffffffffffffffffff81168114614a5d57600080fd5b50565b803567ffffffffffffffff81168114614a7857600080fd5b919050565b8015158114614a5d57600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715614b0157614b01614a8b565b604052919050565b600082601f830112614b1a57600080fd5b813567ffffffffffffffff811115614b3457614b34614a8b565b614b6560207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601614aba565b818152846020838601011115614b7a57600080fd5b816020850160208301376000918101602001919091529392505050565b60008060008060008060c08789031215614bb057600080fd5b8635614bbb81614a3b565b95506020870135945060408701359350614bd760608801614a60565b92506080870135614be781614a7d565b915060a087013567ffffffffffffffff811115614c0357600080fd5b614c0f89828a01614b09565b9150509295509295509295565b600060c08284031215614c2e57600080fd5b60405160c0810167ffffffffffffffff8282108183111715614c5257614c52614a8b565b816040528293508435835260208501359150614c6d82614a3b565b81602084015260408501359150614c8382614a3b565b816040840152606085013560608401526080850135608084015260a0850135915080821115614cb157600080fd5b50614cbe85828601614b09565b60a0830152505092915050565b600080600080600085870360e0811215614ce457600080fd5b863567ffffffffffffffff80821115614cfc57600080fd5b614d088a838b01614c1c565b97506020890135965060807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc084011215614d4157600080fd5b60408901955060c0890135925080831115614d5b57600080fd5b828901925089601f840112614d6f57600080fd5b8235915080821115614d8057600080fd5b508860208260051b8401011115614d9657600080fd5b959894975092955050506020019190565b60005b83811015614dc2578181015183820152602001614daa565b83811115611ef75750506000910152565b60008151808452614deb816020860160208601614da7565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b6020815260006129686020830184614dd3565b600060208284031215614e4257600080fd5b5035919050565b60ff81168114614a5d57600080fd5b60008060008060808587031215614e6e57600080fd5b8435614e7981614a3b565b93506020850135614e8981614e49565b93969395505050506040820135916060013590565b600060208284031215614eb057600080fd5b813567ffffffffffffffff811115614ec757600080fd5b614ed384828501614c1c565b949350505050565b600060208284031215614eed57600080fd5b61296882614a60565b600080600060608486031215614f0b57600080fd5b8335614f1681614a3b565b92506020840135614f2681614a3b565b91506040840135614f3681614a3b565b809150509250925092565b600080600080600060a08688031215614f5957600080fd5b8535614f6481614a3b565b945060208601359350614f7960408701614a60565b92506060860135614f8981614a7d565b9150608086013567ffffffffffffffff811115614fa557600080fd5b614fb188828901614b09565b9150509295509295909350565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000821982111561500057615000614fbe565b500190565b60006020828403121561501757600080fd5b5051919050565b60006020828403121561503057600080fd5b815161296881614a3b565b80516fffffffffffffffffffffffffffffffff81168114614a7857600080fd5b60006060828403121561506d57600080fd5b6040516060810181811067ffffffffffffffff8211171561509057615090614a8b565b604052825181526150a36020840161503b565b60208201526150b46040840161503b565b60408201529392505050565b6000608082840312156150d257600080fd5b6040516080810181811067ffffffffffffffff821117156150f5576150f5614a8b565b8060405250823581526020830135602082015260408301356040820152606083013560608201528091505092915050565b600067ffffffffffffffff8084111561514157615141614a8b565b8360051b6020615152818301614aba565b86815291850191818101903684111561516a57600080fd5b865b8481101561519e578035868111156151845760008081fd5b61519036828b01614b09565b84525091830191830161516c565b50979650505050505050565b6000602082840312156151bc57600080fd5b815161296881614a7d565b8581528460208201527fffffffffffffffff0000000000000000000000000000000000000000000000008460c01b16604082015282151560f81b60488201526000825161521b816049850160208701614da7565b919091016049019695505050505050565b60008282101561523e5761523e614fbe565b500390565b600067ffffffffffffffff8083168185168183048111821515161561526a5761526a614fbe565b02949350505050565b600067ffffffffffffffff80831681851680830382111561529657615296614fbe565b01949350505050565b600080604083850312156152b257600080fd5b82516152bd81614a3b565b60208401519092506152ce81614e49565b809150509250929050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082615317576153176152d9565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff83147f80000000000000000000000000000000000000000000000000000000000000008314161561536b5761536b614fbe565b500590565b6000808312837f8000000000000000000000000000000000000000000000000000000000000000018312811516156153aa576153aa614fbe565b837f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0183138116156153de576153de614fbe565b50500390565b60007f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60008413600084138583048511828216161561542557615425614fbe565b7f8000000000000000000000000000000000000000000000000000000000000000600087128682058812818416161561546057615460614fbe565b6000871292508782058712848416161561547c5761547c614fbe565b8785058712818416161561549257615492614fbe565b505050929093029392505050565b6000808212827f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff038413811516156154da576154da614fbe565b827f800000000000000000000000000000000000000000000000000000000000000003841281161561550e5761550e614fbe565b50500190565b6000817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048311821515161561554c5761554c614fbe565b500290565b600082615560576155606152d9565b500490565b868152600073ffffffffffffffffffffffffffffffffffffffff808816602084015280871660408401525084606083015283608083015260c060a08301526155b060c0830184614dd3565b98975050505050505050565b805163ffffffff81168114614a7857600080fd5b600060c082840312156155e257600080fd5b60405160c0810181811067ffffffffffffffff8211171561560557615605614a8b565b604052615611836155bc565b8152602083015161562181614e49565b6020820152604083015161563481614e49565b6040820152615645606084016155bc565b6060820152615656608084016155bc565b608082015261566760a0840161503b565b60a08201529392505050565b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82036156a4576156a4614fbe565b5060010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b600060ff8316806156ed576156ed6152d9565b8060ff84160691505092915050565b600060ff821660ff84168082101561571657615716614fbe565b90039392505050565b60008251615731818460208701614da7565b9190910192915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fdfea164736f6c634300080f000a